

SHINES Program Review 2017

The SunDial Framework

Enabling High Penetration of PV through Integrated, Feeder-Scale Control of DERs Jan 30, 2017

Matt Kromer & Kurt Roth
Fraunhofer Center for Sustainable Energy

SunDial Project Overview

Project Objectives:

- Develop an extensible, flexible framework to readily and cost-effectively integrate loads, storage, and distributed solar PV
- Test and pilot business models and market mechanisms to enable high penetration of PV
- Dynamically manage loads to support high penetration of solar
- Year-long demonstration on National Grid distribution system with a portfolio of C&I customers

Project Team:

- Fraunhofer CSE
- National Grid
- IP Keys
- DOE SunShot
- MassCEC

Architecture – Major Components

Architecture – Major Components

Architecture – Major Components

SunDial Global Scheduler

- Follow configured load shape
- Minimize customer energy cost
- Maximize IPP revenue
- Etc.

Phase 1 Objectives & Status

- **PV System Construction & Interconnection**
- **Facility Recruitment**
- Scenario Analysis
- Algorithmic Development
- Facility Load Aggregation & Management Engine (FLAME) Development
- Software Development & Systems Integration

Project Demonstration Plan

- Duration: One year
- Location: Shirley, MA. 9MVA feeder, approx. 7MW PV installed or under construction
- PV: 1.5 MW, aggregated across two adjacent PV fields
- Energy Storage: 0.5MW / 1.0MWh
- Facility Loads:
 - >1MW aggregate demand
 - >200kW responsive (targeted)
- Optimize performance under different objectives and constraints

National Grid Phase 2 Shirley PV Site

SunDial System Topology

Shirley PV Site - Status

- Construction completed
- Interconnection Service Agreement completed
- Interconnection upgrades in progress
- Plant Master Controller development in progress
 - Implemented on an RTAC (SEL-3530)
 - Designed to provide a modified SunSpec-compliant interface to GS
 - Alpha revision of code currently under review
- Commissioning / witness testing planned for June 2017

Facility Recruiting: Where we're at and what we've learned

- Target = 1,000kW of peak loads (sum of annual peaks)
- Identified target potential customers with ~4MW of load
 - Industrial facilities, schools, office, country club, hospital, assisted living
- First letter of commitment signed ~300kW
- C&I outreach through National Grid's leading EE programs a major help
- Facilities care foremost about energy cost savings without disruptions
- Challenge: C&I facilities billed under existing tariff structure
- Value Proposition: Manage facilities' monthly demand and annual ISO peak coincident hour capacity charges during pilot
 - Run in SHINES mode on most days, in energy management mode as needed
 - Estimate 5-10% reduction in annual electric bill typical, assess by facility
- Interval data critical for assessing facility load management potentials

Algorithm Development & Scenario Analysis

- Energy Flow Model Development
- Use Case Definition
- Objective function development
- Multi-Objective Optimization Algorithm development

Energy Flow Model Overview

Scenario Configuration

PV Penetration

Max Load Shift

Demand Mix

ESS Sizing

Results

- Costs
- Bulk PowerFlowAnalysis
 - ESS Duty

Cycle

Load-Shift
 Duty Cycle

Evaluating Use Cases

- Use cases are configured by selecting a portfolio of objective functions that collectively define the target policy
- Optimizer then minimizes the applicable cost, analogous to an economic dispatch model

EXAMPLE

Objective Functions	Use Case #1 - Minimize Customer Energy Costs	Use Case #2 - Manage Utility Distribution System Constraints	Use Case #3 - Follow a Target Load Shape
DSO TOU Energy price	~		
Day Ahead Wholesale Energy Procurement	~	~	
Real Time Energy Procurement		~	
Monthly DSO demand charge	~		
DSO ICAP charge	~		
Shift load	~	<	~
Battery - Damage accumulation	~	~	~
Export limit at substation		~	
Import constraint at substation		~	
Network - ISO capacity charge		~	
Schedule signal			~

Global Scheduler Optimization Algorithm

- Optimization Approach: Simulated Annealing
 - Traditional convex optimization methods, e.g., gradient descent or linear programming are not applicable to the problem
 - Optimization space potentially non-convex
 - System is not memoryless
- Simulated Annealing summary
 - At each time step, it considers a set of multidimensional points sampled from the optimization space.
 - A small disturbance to the original configuration is applied and the system "energy" (related to the combination number and to the optimization function) is calculated
 - New energy and solution accepted, if its energy is lower than the energy at the previous step
 - New solution can be accepted if its energy is higher with a probability that decreases as the number of steps increases
 - This procedure is repeated with gradually decreasing disturbance size and likelihood of accepting a solution with higher "energy"
 - Eventually the simulations "freeze."
 - For properly designed simulations, the system's "freezing" corresponds to an approximate global optimal solution that does not depend on the original configuration

Objective Function Example #1 – Minimize Peak Demand & Peak Export

2000 Bldgs Bldgs with FLAME 1500 Btry state Btry pwr - Load Shift 1000 500 -500 -1000 -1500-2000 10 15 20

Net Demand

Component Power Flows

Objective Function Example #2 – Time-of-Use Tariff

Net Demand

Component Power Flows

nationalgrid

FLAME Development: Load management differs a lot from traditional DR

Attribute	Traditional DR	Load Shifting w/SunDial
Frequency of Calls	Order of 5-20 times/year	Majority of days/year
Key Goal	Load shedding	Load sinking to increase PV and load coincidence
Duration of LM	1 to 4 hours	Up to 16 hours/day
Most Needed	Usually summer or winter peak	Mid-/late-spring – largest surplus

FLAME development shaped by these differences:

- Automated load management essential
- Develop of new algorithms for load sinking over extended periods of time
- Millions of potential managed load profiles due to temporal path dependence of load management – need techniques to simplify assessment of options
- OpenADR does not readily accommodate communication of potential load profiles
- Accuracy assessment of baseline loads and load management potentials focuses on hours in and around significant PV generation

FLAME – Load Shift Example

Example load management (i.e., sink and shed)
 potentials for different end uses, in different facility type

Generating & Selecting Load Shift Scenarios

- GS communicates an "ideal" load shape to FLAME
- FLAME
 communicates a
 portfolio of load
 shift options to GS
 that approximate
 the ideal
- GS selects the "ideal" profile
- Implementing as extension to OpenADR, with potential avenue for adoption

Global Scheduler Software Architecture & Implementation

- VOLTTRON platform
- Flexibility to modify
 - Resource Portfolio
 - Data Sources
 - Optimizer
 - Policy
- CommunicationSpecification

ZI-_-

ZX-__

Next Steps

Phase 1

- Phase Review planned for May 2017
- Complete system upgrades, witness testing
- Facility Recruitment Secure additional LOIs from potential partners
- Implementation of FLAME forecast & bulk power shift profiles
- Apply Energy Flow Model, SAM to proposed use cases, complete scenario analysis
- Complete core Global Scheduler platform & simulation test environment

• Phase 2:

- Complete software development & integration
- Field Deployment of FLAME & Global scheduler
- Demonstration / deployment ~Q4 2017/Q1 2018

• Phase 3:

- Field test
- Evaluation
 Synthesize lessons learned

Accomplishments (To Date)

- Developed a highly flexible platform for driving a portfolio of DERs towards user-defined objectives
- Novel application of an optimization algorithm to address the specific characteristics of load shifting & energy storage
- Foundational work that supports the use of demand-side management to support local matching of supply & demand on a timescale of hours
- Potential reduction in energy storage size to support high-pen PV
- Preliminary deployment of assets for field demonstration

Anticipated Project Outcomes

- Framework for cost-effectively integrating demand-side management to support high penetration of PV, supported by
 - Initial commercial implementation of demand management platform
 - Data standard for negotiating long-term load shift
 - Reference control platform
 - Results of field testing
- Flexibility to handle current and future conditions e.g.,
 - import/export constraints,
 - negative pricing, etc.
 - Summer peak
 - Shoulder month surpluses,
 - ...and more

Learn more about SHINES and SunDial

- https://www.energy.gov/eere/sunshot/sustainable-and-holisticintegration-energy-storage-and-solar-pv-shines
- http://www.cse.fraunhofer.org/shines
- Matt Kromer <u>mkromer@cse.fraunhofer.org</u>
- Kurt Roth <u>kroth@cse.fraunhofer.org</u>

