

SHINES Program Review 2017

AGENT-BASED COORDINATION SCHEME FOR PV INTEGRATION (ABC4PV)

Awarded to CMU, NRECA & Aquion Energy
Presented by Panayiotis Moutis, PhD (CMU)

Presentation Outline

- Motivation
- Technical Objectives
- Team
- Approach
- Anticipated Outcomes
- Project Plan, Outcomes & Milestones Achieved in 2016
- Discussion

Motivation

- Increase penetration of photovoltaics, storage & demand response, jointly operating based on . . .
- Distributed (scalable) optimal (cost effective) control
 - Gap between theoretical approaches and actual application

Need for a **testbed** for distributed algorithms, a **testbed** for the application of PV integration and a **testbed** of such algorithms in a practical environment

Technical Objectives

Project Goals

- Define proper set of active assets (PV, storage, loads) = "Unit"
- Extend & Test existing distributed optimal control algorithm
 - Extend to multiple assets per control point (PV, storage, switches)
 - Test for stability, robustness & malicious incidents
- Verify the real-world operation of 10 units on test-
 - Install units on end-customer households of a co-op feeder
 - Define testing protocols and cyber tools
 - Determine communication architecture (due to argorithm)
 - Assess algorithm optimality (due to extensions & framework)
- Study impact of storage system (notably, lifetime) on optimality

Team

- CMU (S. Kar, G. Hug, J. Moura, P. Moutis, J. Whitacre)
 - Operating control framework
 - Efficacy assessment (simulations & software implementation)
- NRECA (C. Miller, A. Cotter, D. Danley, D. Pinney)
 - Testbed development
 - Standardization of unit equipment
- Aquion Energy (T. Madden, J. Whitacre)
 - Battery storage system physical integration and optimization

Roadmap Approach:

- Determine "unit"
- Inter-unit collaboration

Approach: Unit-based integration and abstraction

- The ABC4PV unit
 - Max <u>integration &</u> <u>combinational</u> value
 - Plug-n-play capabilities
 - Assuming on <u>high</u>
 <u>penetration</u> (i.e. a
 large number of
 "units" has been
 deployed)

Approach: Inter-unit collaboration

- Agent-based distributed optimal control algorithm:
 - Units share information
 - System operator optional
 - Local calculations

Approach: Distributed optimization framework

- Form of updates
 - Mathematical formulation based on <u>Consensus + Innovation</u> approach:

$$\lambda_{j}^{(i+1)} = \lambda_{j}^{(i)} - \beta_{i} \sum_{l \in \omega_{j}} \left(\lambda_{j}^{(i)} - \lambda_{l}^{(i)} \right) - \underbrace{\alpha_{i} \hat{d}_{j}^{(i)}}_{innovation} \qquad \left(\sum_{j=1}^{j} \hat{d}_{j}(\lambda_{j}) = 0 \right)$$

<u>consensus term</u>: Lagrangian multiplier representing the marginal cost <u>innovation term</u>: -»- for global constraint(s)

Considered Application:

- Consensus converges to cost optimality
- <u>Innovation</u> effect fades with convergence

Anticipated Outcomes

- Key Project <u>Products</u> (specific "artifacts")
 - Framework for a maximum value, plug'n'play unit design
 - Scalable and robust distributed algorithm for optimal control
 - Test-bed verified guarantees

- Major <u>Outcomes</u> (conceptual achievements)
 - Pathway towards efficient integration of up to 100% solar (or distributed generation) penetration on optimal control
 - Functioning, adjustable & expandable test-bed for distributed algorithms

Project Plan

- Distributed Control Methodology
 - Design and Development of Distributed Resource Coordination and Control Methodology (Years 1, 2)
 - Software Implementation of Algorithms (Years 1, 2)
 - Cybersecurity Assurance (Years 1, 2, 3)
- Testbed Development
 - Installation of Physical Components and Test-bed Setup (Years 1, 2)
 - Performance Testing in Test-bed (Years 2, 3)
- Functional and Economic Assessment and Optimization
 - Value of Solar (Years 2, 3)
 - Value of Storage (Years 2, 3)
 - Energy Storage Sub-System and Full System Assessment and Control Optimization (Years 2, 3)

Distributed Control Methodology Development

Task 1: Design and Development of Distributed Resource Coordination and Control Methodology

- Modeling of Cost/Objective
 - Objective function of the optimization problem
- Modeling of Constraints (Operational and Uncertainty)
 - Component operation constraints, e.g. min/max inverter power
 - Network constraints, e.g. line loading limits
- 3. Formulation of Iterative Distributed Control
 - Employ optimization algorithm to the problem
- 4. Performance Analysis and Real-time Guarantees
 - Benchmarking of convergence and time complexity
- Simulation of Test-bed

Task 1: Design and Development of Distributed Resource Coordination and Control Methodology

- 1. Modeling of Cost/Objective
 - Objective function of the optimization problem
- Modeling of Constraints (Operational and Uncertainty)
 - Component operation constraints, e.g. min/max inverter power
 - Network constraints, e.g. line loading limits
- 3. Formulation of Iterative Distributed Control
 - Employ optimization algorithm to the problem
- 4. Performance Analysis and Real-time Guarantees
 - Benchmarking of convergence and time complexity
- Simulation of Test-bed

Objective Function

 Expresses total cost of coop feeder load demand energy, subtracting PV, storage & demand response contributions

$$\begin{aligned} & \text{minimize} \ \left[\sum_{i \in \{loads\}} P_{i,L,t} + \sum_{i \in \{batteries\}} \frac{P_{i,RCh,t}}{n_i} - \sum_{i \in \{PV\}} P_{i,NM,t} - \sum_{i \in \{batteries\}} P_{i,DCh,t} \right]_{t \in [1,24]}^T \cdot \left[IF_t \right]_{t \in [1,24]} + \\ & + \sum_{t \in [1,24]} \sum_{i \in \{batteries\}} Dgd_{i,RCh,t} + \left[\sum_{i \in \{loads\}} P_{i,IL,t} \right]_{t \in [1,24]}^T \cdot \left[ILC_t \right]_{t \in [1,24]} - \\ & - \left[\sum_{i \in \{PV\}} P_{i,Cntr,t} \right]_{t \in [1,24]}^T \cdot \left[Cntr_{PV,t} \right]_{t \in [1,24]} \end{aligned}$$

Problem Constraints

Operating, system, policy, etc. . .

. . .

. . .

. .

$$\begin{aligned} & \underline{\left|S_{ij}\right|} \leq \left|S_{ij}\right| \leq \overline{\left|S_{ij}\right|} \quad \underline{\left|v_{i}\right|} \leq \left|v_{i}\right| \leq \overline{\left|v_{i}\right|} \\ & \underline{p_{ij}} + i \cdot q_{ij} = v_{i} \cdot \left(v_{i}^{*} - v_{j}^{*}\right) \cdot y_{ij}^{*} \text{ and } P_{i} = \sum_{j} p_{ij} \text{ and } Q_{i} = \sum_{j} q_{ij} \end{aligned}$$

Non-convex power flow equality constraint

Elaboration on Non-Convex Power Flow Constraint

- Relaxations lead to computationally tedious algorithms
- Existing linear approximations (DC & Decoupled) fail to consider the resistive nature of the distribution systems
- Two novel "resistive-aware" linear approximations developed

Novel linear OPF approximation indicative results

- 10-bus radial distribution feeder on ACSR-95 lines (9 loads & DG units)

Decoupled OPF		Novel linearized OPF		SDP-relaxed OPF	
V in p.u. Angle (rad)		V in p.u. Angle (rad)		V in p.u.	Angle (rad)
1.0000	0	1.0000	0	1.0000	-0.0000
0.9959	-0.0056	0.9949	-0.0034	0.9950	-0.0024
0.9792	-0.0281	0.9744	-0.0171	0.9743	-0.0125
0.9762	-0.0322	0.9707	-0.0196	0.9705	-0.0144
0.9750	-0.0338	0.9693	-0.0205	0.9691	-0.0151
0.9731	-0.0365	0.9669	-0.0222	0.9667	-0.0164
0.9723	-0.0377	0.9658	-0.0230	0.9655	-0.0170
0.9708	-0.0398	0.9640	-0.0242	0.9637	-0.0180
0.9703	-0.0406	0.9633	-0.0247	0.9631	-0.0184
0.9700	-0.0410	0.9629	-0.0249	0.9626	-0.0185

Novel linearized OPF approximation in C+I f/w results

Novel	central	Novel on C+I		
V in p.u.	Angle (rad)	V in p.u.	Angle (rad)	
1.0000	0	1	0	
0.9949	-0.0034	0.99711	-0.0033843	
0.9744	-0.0171	0.98521	-0.017112	
0.9707	-0.0196	0.98302	-0.019603	
0.9693	-0.0205	0.98226	-0.020528	
0.9669	-0.0222	0.98087	-0.022189	
0.9658	-0.0230	0.98024	-0.022955	
0.9640	-0.0242	0.97925	-0.024232	
0.9633	-0.0247	0.97886	-0.024679	
0.9629	-0.0249	0.97860	-0.024934	

Compared to the Decoupled OPF on C+I, novel OPF 30-60% faster

Brief note on the novel Battery operating cost model

Unlike simplified linear cost models of Battery Storage systems, a novel cost model has been developed

- Effect of CapEx depreciation accounted for
- Battery lifetime (throughput) expressed as a function of "usability"

More precise consideration of battery operating cost for similar control problems...

Task 2: Software Implementation of Algorithms

- 1. Network Design
 - Assessment of the selected coop feeder as the test bed
- Implementation of Code on Embedded Site Controller and Communication
 - Validate performance of operation framework in simulation
 - Validate performance of operation framework in situ
- 3. Write Host Program to Collect and Format Data

Task 2: Software Implementation of Algorithms

- Network Design
 - Assessment of the selected coop feeder as the test bed
- Implementation of Code on Embedded Site Controller and Communication
 - Validate performance of operation framework in simulation
 - Validate performance of operation framework in situ
- 3. Write Host Program to Collect and Format Data

Indicative power flow output on CoServ feeder

Effect of distribution feeder design on power quality

Ikaria island (Greece)R-22 feeder on peak load

Rhodes island (Greece)
 R-22 & R-26 feeders on installed (not peak) load

- Ikaria within power quality standard, Rhodes not (at various levels >50% installed)
- Distribution Networks usually oversized...

Task 3: Formulation of Iterative Distributed Control

- 1. Security Design
 - Analysis of cyber-security concerns and suggested measures
- 2. Secure Software Testing
 - Testing cyber-security performance of developed framework
- 3. System and In-Situ Testing
 - Cyber-security testing on the test-bed implementation

Task 3: Formulation of Iterative Distributed Control

- 1. Security Design
 - Analysis of cyber-security concerns and suggested measures
- 2. Secure Software Testing
 - Testing cyber-security performance of developed framework
- 3. System and In-Situ Testing
 - Cyber-security testing on the test-bed implementation

Testbed Development

Task 4: Installation of Physical Components and Test-bed Setup

- 1. Identification of Suitable Feeder
 - Promote project to candidate coop feeders
- 2. Design/Sizing of Devices
 - Determining exactly the components of each unit
- 3. Initial Deployment and Validation
 - Assessment of unit components (inter-)operability
- 4. Full Deployment and Validation
 - Unit fine-tuning based on cost assessment and final installation

Task 4: Installation of Physical Components and Test-bed Setup

- Identification of Suitable Feeder
 - Promote project to candidate coop feeders
- 2. Design/Sizing of Devices
 - Determining exactly the components of each unit
- 3. Initial Deployment and Validation
 - Assessment of unit components (inter-)operability
- 4. Full Deployment and Validation
 - Unit fine-tuning based on cost assessment and final installation

Unit Design – Bill of Materials

PV Subsystem				
Item	Description	Manufacturer	Part #	
1.1	PV Module	Suniva	260 Wp	
1.2	Racking	Rooftech	RT-[E]	
1.3	Optimizer	Tigo	Tigo TS4L	
1.4	Optimizer Comms / Rapid Shutdown	Tigo	Gateway	
1.5	Arc Fault Detection	DC Sunvolt	ADU - Arc Fault Detection Module	

Power Electronics Subsystem				
Item	Description	Manufacturer	Part #	
3.1	Inverter	Schneider	Conext XW+ 5548-NA	
	Power Distribution			
3.2	Panel	Schneider	Conext XW+ PDP	
3.3	Charge Controller	Schneider	XW-MPPT80-600	
3.4	Control Panel	Schneider	Conext 865-1050-01	
3.5	Comms Panel	Schneider	Conext 865-1058 ComBox	
3.6	Battery Monitor	Schneider	Conext 865-1080-01	
3.7	100A DC Breaker	Schneider	865-1070	

Battery Subsystem			
Item	Description	Manufacturer	Part #
2.1	Battery	Aquion	Aspen 48M
2.2	Battery BMS	Aquion	

Controls Subsystem				
Item	Description	Manufacturer	Part #	
4.1	Whole House Monitor	RCS	Model EM52-ZW	
4.2	Thermostat	RCS	Model TZ45	
4.3	Load Control Relay	Evolve	Evolve LFM-20	
			Heavy Duty Relay	
4.4	Load Power Contactor	Elk	Contactor	
			VeraEdge Z-Wave	
4.5	Zwave Gateway	Vera	Controller	
4.6	System Controller w/ enclosure	tbd		

Unit Design – One line Diagram

Unit equipment procurement & testing set-up

Formally quantified results at the end of 2016

- Average LCOE below \$0.14/kWh (seasonal can spike)
 - Additional analysis to follow
- Power flow simulations on coop feeders (and others)
 determine dimensioning as main power quality factor
- Cybersecurity assurances procured and testing protocols determined
- Test bed (coop feeder) identified (could be revisited)
- Unit components, topology and design finalized
- Recharging/discharging tests successful
- Control & optimal algorithm operation tested

Dissemination actions

- Conference paper (S. Weerakkody, B. Sinopoli, S. Kar, and A. Datta, "...," IEEE Conference on Decision and Control, 2016)
- Journal submission (C. Wu, G. Hug, and S. Kar, "...," Submitted to IEEE Transactions on Smart Grid, Oct. 2016)
- P. Moutis' invited talks at Princeton Uni., CalTech, UCLA,
 UIUC
- Power engineering letter (P. Moutis, G. Hug, and S. Kar, "...,"
 Submitted to IEEE Transactions on Power Systems, Nov. 2016)
- Conference publication (C. Wu, G. Hug, and S. Kar, "...,"
 American Control Conference (To appear), May 24–26, 2017, Seattle,
 WA)

Questions?

Comments?