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Objective

Developing a predictive model to de-risk bio-based
production, expand location choices

What feedstocks are available? How much will they cost?
What treatment and process parameters should we use?
- ldentify and Optimize Traditional Pretreatment Methods

« Biomass Mixture Compositions

Integrate with Least cost Formulation (INL) and Techno-Economic
Analysis (SNL)

BETO MYPP:

By 2017, validate efficient, low-cost, and sustainable feedstock supply and logistics
systems that can deliver feedstock at or below $84/dry ton (2014%)

By 2022, ---supply 285 million dry tons per year to support a biorefining industry (i.e.,
multiple biorefineries) utilizing a diversity of biomass types. )\m
>




Quad Chart Overview

Timeline
*Project Start Date: 10/1/2014
*Project End Date: 9/30/17
*66% complete (paused 12/16)

Budget

FY 15 FY 16 Total
Costs Costs

Planned
Funding
(FY 17-)

220,000

DOE 160,000 220,00

Funded (LBNL)  (LBNL) (LBNL)
(paused)
95,000 35,000
(SNL) (SNL) 15,000
(SNL)
(paused)
Project 0 0 0 0

Cost
) Share
(Comp.)*

Barriers

Ft-1. Overall Integration and Scale-Up
Ct-A, Feedstock Variability

Ct-D. Efficient Pretreatment

Partners
0 SNL (20%)

o Blake Simmons (now at LBNL)
0 Murthy Konda
0 Seema Singh (since FY 2017)

o INL (20%)
o Allison Ray
0 Chenlin Li (at LBNL until 2015)
o Damon S. Hartley
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— Qverview

2. LBNL
Perform lab-scale
deconstruction
\%
3. LBNL

Build and Validate the
predictive model

. LBNL

Rheological studies to
determine behavior of
mixed feedstocks at high
solids loading

L

1. INL

> Least Cost Modeling,
Feedstock blends supply and
characterization

4. LBNL

> Apply Predictive Model (High -

Solids Deconstruction and
Fermentation)

v
7. LBNL

Scale up (100L)
deconstruction tests

>

6.

SNL
TEA model

comparing IL with DA

8.

A

LBNL
Scale up (2L)

hydrolysate
fermentation




1 — Overview

1. INL

> Least Cost Modeling,
Feedstock blends supply and
characterization
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2 — Approach: LCF for Energy Cane availability
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Energy cane-2030

Farm gate price: $70/dry ton
[ To

I_:] = 500 dry tons

I 500 ary tons - 25000 dry tons
- 25000 dry tons - 50000 dry tons

I ;> 50000 ary tons
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2 — Approach: LCF for Switchgrass availability

Switchgrass-2030
Farm gate price: $50/dry ton
[Jo

[ < 25000 dry tons

I 25000 ary tons - 100000 dry tons
I 100000 dry tons - 300000 dry tons
I 200000 dry tons - 500000 ary tons
- >500000 dry tons




2 — Approach: LCF for Corn Stover availability
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Corn stover |

Farm gate price: $60/dry ton Lee County —» (~ ',‘_)r__.
0 |

[ ] <25000 ary tons R

I 25000 dry tons - 100000 dry tons R

B 100000 dry tons - 200000 dry tons
I 200000 dry tons - 400000 dry tons
I > 400000 dry tons




Overview

2. LBNL
Perform lab-scale
deconstruction
. v
3. LBNL

Build and Validate the
predictive model
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2 — Approach: Experiments

Test Factors:

3 pretreatments (dilute alkali, dilute acid, and ionic liquids)

Temperatures scaled, 1 - 100% (140 to 180°C; 55 to 120°C; 120 to 160°C)
Times scaled, 1 — 100% (5 to 60 minutes, 1 to 24 hours, 1 to 3 hours)
Mixtures with ratios of 3 feedstocks (energy cane, corn stover, switchgrass)

Challenges in obtaining a good model:
Several lab-scale deconstruction tests were required

Data need to be varied, low and high yields required

Applicable only for the feedstocks tested, mid FY16 replaced energy cane with
wheat straw

Critical success factors: More deconstruction data, scale-up studies

10 FERRH




2 — Approach: Experimental Design, SAS JMP®

Whole PT |Temp% |°C Time [Min |[CS |[SG |[EC
plots %

1 IL 1 120 |39 106.8 |0 1 0

1 Ac |1 140 [100 [60 (03 |04 |03
1 Al 1 55 100 | 1440 |0 0 1

1 Al 1 55 39 589 |0 05 |05
1 Al 1 55 100 | 1440 |0 1 0

1 IL 1 120 |100 [180 |o 0 1

2 Ac | 100 180 |1 5 0 06 |04
2 Ac | 100 180 |60 38 1 0 0

2 Al 100 120 |1 60 |0 1 0

2 Al 100 120 |1 60 1 0 0

2 Al 100 120 |1 60 0 0 1

2 IL 100 160 |1 60 |0 0 1

3 IL 39 135 |100 |180 |05 |05 |0

3 Ac |39 155 |1 5 0 0 1

3 IL 39 135 |1 60 1 0 0

3 Al 39 80 1 60 03 |04 |03
3 Ac |39 155 |1 5 04 |06 |O

3 Al 39 80 100 | 1440 |1 0 0

4 Ac |80 172 |80 49 0 1 0

4 IL 80 152 |80 156 |1 0 0

4 IL 80 152 |80 156 |0 1 0

4 IL 80 152 |1 60 05 |0 0.5
4 Al 80 107 |80 1159 |02 |04 |04
4 Ac |80 172 |80 48.8 |0 0 1




2 — Approach: Deconstruction

Preteatmcnt

SS316 Tube loading

Biomass /” |
10% (w/w) { )
Biomass in Tubes putin - d
solvent a fluidized
10 ml working sandbath
volume
Stover Grass Cane
HPLC Analysis Enzymatic hydrolysis
A | |
TR T Sugar & 4% (w/w) solids
: « rurfural ~ loading
Analysis - 25 ml working

volume in shake

flask
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3 — Technical Accomplishments: Model

Factor Coefficients Standard Error t-ratio  Prob>[t]
Energy Cane 66.76 3.80 17.57 <0.0001
Switchgrass 73.62 4.02 18.32  <0.0001
Corn Stover 79.95 3.95 20.24  <0.0001
Alkali Pretreatment -10.37 2.84 -3.65 0.0005
Acid Pretreatment -5.59 2.92 -1.91 0.0599
Temperature (1, 100) 3.30 2.68 1.23 0.2221

Time (1, 100) 243 3.00 0.81 0.4206




3 — Approach: Data Interpretation with Ternary Plots

Profile for predetermined yields and optimal biomass mixture envelopes

A= /Mixture Profiler

T L R Factor Current X Lo Limit
temp { 100 1
time { 60 1
° Corn stover {} 0.336747 0
) @ Switchgrass {} 0.330064 0
® Energy Cane {t 0.333189 0
Pretreatment 1] 0 |Alkali -0.5
Response Contour CurrentY Lo Limit
— Furural (@) T———i 0.26] 0.2535398
— Glucose % yield T———F———— 60 60.445875
Corn stover
0.1
0.9
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Energy Cane

Dilute Alkali

a
| = Mixture Profiler

T L R Factor Current X Lo Limit
O O O temp 0 100 1
D O O time {} 60 1
© © © Ccomn stover {} 0.3246988 0
D) @ © switchgrass - 0.2735881 0
) © Energy Cane { 0.4017131 0
0 0 Pretreatment [} 2L -0.5
Response Contour CurrentY Lo Limit
— Furfural (@) ~T———i 0.25| 0.2466324
— Glucose % yield T—————{—1 90| 95.018843

Corn stover
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3 - Technical Accomplishments: Model Validation
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3 - Technical Accomplishments: Summary

» Acid pretreatment of mixtures was leading to furfural
generation due to uneven severities for feedstocks with
different recalcitrance

 lonic liguids were producing 90%+ (of theoretical) sugar
yields in most cases leading to a distorted model

* Lower enzyme loadings were narrowing feedstock
envelopes and leading to a drop of about 10% (of
theoretical) sugar yield

« Validation of model was necessary




1 — Overview

4. LBNL

> Apply Predictive Model (High -
Solids Deconstruction and
Fermentation)

. LBNL L

Rheological studies to
determine behavior of
mixed feedstocks at high
solids loading




3 — Technical Accomplishments: Fermentation

Glucose Yield (% of Theoretical)

1(a)

3

Low biomass loading

m High biomass loading
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Energy Cane Switch Grass Comn Stover 0.9 CS/0.1

02CS/04

Corn stover hydrolysate
converted rapidly to ethanol

Switchgrass hydrolysate was not
only slow in converting, it yielded
only 80% ethanol

Mixed feedstock with only 20%
corn stover led to 100% ethanol

yield

SG SG/04EC
100 -

Energy Cane was most recalcitrant

Mixture of energy cane (40%) and
switchgrass (40%) performed better
than either single feedstocks when
mixed with 20% corn stover

High solids loading alkali
pretreatment led to lower yields but

with similar trends

Ethanol Yield (% of Theoretical)
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2 — Approach: Rheology with Solid loading




2 — Technical Accomplishments: Rheology Variation
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A ECSG Blend 15% (w/w) A EC 15% (w/w)

© EC SG Blend 30% (w/w) © EC30% (w/w)

1.00E+02 T T T T
0.01 0.1 1 10 100 1000

Complex Shear Stress (Pa)

©

Shear Modulus, Complex Component G* (Pa)

« Mixed feedstocks behave differently at lower solid loading, potential to blend
feedstocks to obtain better processing conditions

* The difference in rheological behavior not pronounced at high solids loading

20 Rl
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1 — Overview

6. SNL

> TEA model

comparing IL with DA
A
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3 — Technical Accomplishments: TEA

Ethanol yield (% of Theoretical)
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o

7.00
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CIXylan o 7]
==Ethanol Production g 6.80 4
52.1 9.6 52.3 - 60 = e |
_ O —— —n 50 5§ £
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. - 10 =2 % 6.20
. T 0 6.10 T T
S1: Corn Stover  S2:0.33 EC/0.33 S3:0.5EC/0.5CS S1: Corn Stover  S2:0.33 EC/0.33 S3:0.5EC/0.5CS
SG/ 0.33 CS SG/ 0.33 CS

TEA indicated that feedstock cost does not always determine MESP;
xylose yield and conversion can overcome the low cost feedstock pricing

S3 scenario is a feedstock with 50% corn stover and more expensive than
S2, but the MESP from S3 scenario is better

22 RN
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1 — Overview

7. LBNL 8. LBNL

> Scale up (2L)

hydrolysate
fermentation

Scale up (100L)
deconstruction tests
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4 — Relevance

Goal: Developing a predictive model to de-risk bio-based
manufacturing, expand biorefinery location choices

Directly supporting BETO’s goal: Enable sustainable, nationwide
production of biofuels that are compatible with today’s
transportation infrastructure...

Addresses BETO'’s 2017 performance goals:

... validate efficient, low-cost, and sustainable feedstock supply and

logistics systems..... at or below $84/dry ton (2014%)

... the industry could operate at 245 million dry ton per year scale
... determine the impact of advanced blending and formulation

concepts on available volumes
Project metrics and technical targets were driven by TEA

Scale-up studies will not only validate the model, but also make
tech-transfer smoother

24 RN




4 — Relevance

Profile for predetermined yields and optimal biomass mixture envelopes

a
A= /Mixture Profiler | = Mixture Profiler

T L R Factor Current X Lo Limit Hi Limit T L R Factor Current X Lo Limit Hi Limit
) temp 0 100 1 100 O O O temp ‘ 0 100 1 100
time {t 60 1 100 © © O time - {} 60 1 100
L Corn stover {} 0.336747 0 1 ® © O comstover — 1 0.3246988 0 1
) @ Switchgrass {t 0.330064 0 1 © @ O switchgrass — 1| 0.2735881 0 1
) © Energy Cane {t 0.333189 0 1 © © @ EnergyCane - {} 0.4017131 0 1
O Pretreatment ] 0 |Alkali -0.5 25 © © O Pretreatment - | 2/IL | 0.5 25
Response Contour CurrentY Lo Limit Hi Limit Response Contour CurrentY Lo Limit Hi Limit
— Furfural (@) ———i 0.26 0.2535398 . . — Furfural (@) ~T———i 0.25| 0.2466324 | '

— Glucose % yield T——{———— 60| 60.445875 . , — Glucose % yield T—————{—i 90| 95.018843
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5 — Future Work

« Compare loose feedstock with formatted versions
(briquettes), perform energy density studies

e Include bio-compatible ILs, e.g. Cholinium Lysinate

e Scale-up dilute alkali pretreatment (100L) at high
solids loading (30% w/w)

e Perform fermentations in 2L bioreactors

 More deconstruction tests at the lab-scale---




Summary

1.

Overview: Predictive modeling provided insights into
blending biomass feedstocks

Approach: Deconstruction tests and associated analytics
can inherently bring some variability in data; validation
and scale-up tests were necessary

Technical Accomplishments: Identified feedstock
mixtures that can be successfully converted with a high
ratio of recalcitrant feedstocks

Relevance: Feedstock variability can exist even in a
single type. Predictive modeling can help address this
variability in real time

Future work: More scale-up and more lab-scale tests

27 RN




Summary

All project goals and milestones were achieved until the
end of FY16, developed wheat-straw based model

Developed a predictive model to identify biomass blends
that can utilize recalcitrant feedstocks

Feedstock mixture with a 20% corn stover led to high
sugar yields and was converted 100% to ethanol

IL treatment provided highest sugar yields

Alkali pretreated hydrolysates were successfully
converted to ethanol

Single feedstocks and biomass blends were observed to
be rheologically similar at high solids loading

26 [l
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Publications, Patents, Presentations, Awards,
and Commercialization

Publication:

A. Narani, P.C. Coffman, J. Gardner, N.V.S.N. Murthy
Konda, Chyi-Shin Chen, F. Tachea, C. LI, A. E. Ray,
D. S. Hartley, A. Stettler, B. Simmons, T. Pray, and
D. Tanjore

“Predictive modeling to de-risk bio-based
manufacturing by adapting to variability in
lignocellulosic biomass supply” Submitted to Energy
and Environmental Sciences




Publications, Patents, Presentations,
Awards, and Commercialization

Presentations:

A. Narani, P. Coffman, F. Tachea, C. Li, T. Pray, and D.
Tanjore. Predictive Modeling and Rheological
Characterization of Mixed Feedstocks. AIChE Annual
Meeting. November 8-13, 2015, Salt Lake City, UT.

A. Narani, P. Coffman, J. Gardner, N.V.S.N. Murthy Konda, K.
L. Kenney, V. Thompson, G. L. Gresham, C. LI, B.
Simmons, D. Klein-Marcuschamer, T. Pray, and D.
Tanjore. Predictive Modeling Can De-Risk Bio-Based
Production. Oral Presentation for SIMB Symposium on
Biotechnology for Fuels and Chemicals. April 27-April 30,
2015, San Deigo, CA.
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Publications, Patents, Presentations,
Awards, and Commercialization

Posters:

J. Gardner, G. Yang, P. Coffman, A. Narani and D. Tanjore.
Predictive Modeling Can De-Risk Biobased Production,

Poster Presentation, BERC Innovation Expo, October 16,
2014, Berkeley, CA.

J. Gardner, D. Tanjore, C. Li, J. Wong, W. He, K. Sale, B. A.
Simmons and S. Singh. Rheological Characterization of 1-
Ethyl-3-Methylimidazolium Acetate and Lignocellulosic

Biomass mixtures. Poster Presentation for Joint BioEnergy
Institute Retreat, Aug 26-28, 2013, Sonoma, CA.
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Predictive Modeling Defined

“Predictive modeling is a mathematical algorithm that predicts target
variable from a number of factor variables.” - 56" Annual Canadian
Reinsurance Conference

Day to day example of Predictive modeling NETFLIX

Has been applied in other renewable sectors: wind and solar

12V 40AH DEEP CYCLE
LITHIUM ION BATTERY




Data Interpretation through Excel can be Limiting

m Dilute Acid
w Dilute Alkali
® Jonic Liquid
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Approach
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