

U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review 2.2.1.501 Feedstock Characterization, Performance and Development March 2017

Technology Area: Conversion Platform

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Magdalena Ramirez Amber Hoover

Idaho National Laboratory (INL)

Goal

Create a systematic approach for **mapping biomass resources to conversion pathways**, forming the basis for biomass valuation, and informing when biomass preprocessing is needed to ensure feedstocks are conversion ready.

Outcome

A conversion-based biomass grading system based on key biomass characteristics with ≥85% correlation to measured conversion products from two conversion pathways, the range of variation for those characteristics across 150 commercially relevant samples, and a techno-economic methodology for categorizing the range of variation in the key characteristics.

Motivation

The first-of-a-kind cellulosic ethanol demonstration plants have struggled with **feedstock variability**, as quality variation affects performance, processing and operations. In-depth, comprehensive characterization and a grading system can be used to evaluate biomass characteristics to inform preprocessing and conversion segments on characteristics that need to be addressed.

Energy Efficiency & Renewable Energy

Quad Chart Overview

Timeline

- Project start date: 10/01/15
- Project end date: 09/30/18
- On-going
- Percent complete: 50%

Budget

	FY 16 Costs	Total Planned Funding, FY 17 - Project End Date	
DOE Funded	\$1.885M	\$3.880M	

Barriers addressed

- Terrestrial Feedstock Availability and Cost (Ft-A), Terrestrial Feedstock Quality, Monitoring and Impact on Conversion Performance (Ft-E), Feedstock Variability (Ct-A)
- Characterization methods and methodologies
- Convertibility testing

Collaborators

- North Carolina State University
- Sun Grant Regional Feedstock Partnership
- Consortium for Computational Physics and Chemistry (CCPC), NREL, Other INL projects
- Seeking the collaboration of other National Laboratories

1 - Project Overview

Diversity

- To achieve the billion-ton vision, a diverse portfolio of biomass types and plant species will need to be included in the bioeconomy.
- Quality differences exist between species, cultivars, etc.

Variability

- Within plant species there are quality differences, because of:
 - Nutrient input
 - Seasonal variations
 - Harvest time
 - Harvest equipment, etc.

Grading System

 Variability exhibited by biomass resources necessitates preprocessing to produce feedstocks that consistently meet process specifications

pathway?

1 - Project Overview

• Grading systems exist for commodities (e.g. crude oil), including wood for bioenergy industry end-users (heat & power)

Crude Oil Industry Example:

- Key properties:
 - Density Light to Heavy
 - S content Sweet to Sour
 - TAN High Acid
- Light, sweet grades require less processing and upgrading compared to heavy, sour grades
- (Quality) Grades define price, via a differential of a marker (high quality) crude, e.g.
 - Per unit of sulfur –US\$0.82
 - Per unit of TAN –US\$0.88
 - Per unit of API per dollar of Brent +US\$0.0047

Value vs. Grades

Energy Efficiency & Renewable Energy

1 – Biomass Grading System for Biofuels

- Billion Ton biomass valued on factors that <u>do not</u> consider full range of quality.
- Translate biomass quality into grades meaningful to end use processes.
- This is a large, complex, cross-cutting undertaking.
- Underpins mobilization of the billion tons, commoditization, risk reduction/mitigation, and rate of growth of the industry.

Comprehensive	Define Key	Develop Grading	Deploy
Characterization	Characteristics	System	Methods/Tools
Examples: Moisture content Composition Elemental (org+inorg) Calorimetry Density Mechanical prop.	Modeling approach Examples: Sugar release Conversion	 Define grading framework Variation range for key characteristics Develop binning methodology Quantify grade 	 Rapid, field deployable methods Standards (e.g., ISO) QA/QC

meanings

1 - Project Overview

- A conversion-based biomass grading system to form the basis for valuation of biomass resources, whereby the framework allows for future expansion of grading criteria
- The incorporation of fully characterized low-quality, low-cost biomass resources in the biofuels supply chain **to meet cost, quality and volume goals**

2 – Approach

Technical

- 1. Identification of **key characteristics affecting conversion**. The goal is to determine the minimum number of characteristics relevant to conversion that need to be included in a grading system.
- 2. Data (histograms) of **representative distributions of the characteristics** identified in #1 and determination of the variability ranges for the diversity of biomass resources.
- A binning methodology that provides economic or technical rationale for categorizing data from #2 into grades. These ranges of variability then need to be graded (i.e., binned) in a meaningful way.

Challenges

- Uniqueness: No grading system exists today for a biofuels industry end-user.
- Uncertainty: Technology for all parts of the supply chain and biorefineries are in development.
- **Data**: No comprehensive characterization data exists for a range of biomass materials.
- Knowledge: Critical relationships between biomass properties and performance are unknown.

2 – Approach (Management)

- Network with projects on the supply side (upstream) and on the preprocessing side (downstream).
- Identification of the key characteristics relies on the accurate assessment of the properties to address intrinsic material variability.
- Work with partners and collaborators.

Success Factors:

- Establish the technical rationale for selection of key characteristics that could be measured using rapid, online, field deployable methods.
- Establish the technical rationale for bin ranges of key characteristics and consistency within grades and downstream processes.
- Establish a **preliminary grading system** with no more than six grades per end use.
- Quantify penalties.

Go/No-Go Milestone: Demonstrate that a preliminary conversion-based biomass grading system could be established for one representative biochemical and one representative thermochemical conversion pathway (Due in March 2017).

3 – Technical Accomplishments: Grading Framework

- No framework was previously established for grading biomass for the biofuels industry.
- The **framework developed** in this project is the technical and economic foundation that supports the grades and provides a transparent rationale for the system.

3 – Technical Accomplishments: Characteristic Distributions

- Identified the extent of biomass quality variation by partnering with the Sun Grant Regional Feedstock Partnership.
- Composition & proximate/ultimate for ~2,000 samples from diverse crop types.
- Variability from crop years, geographic locations, & research treatments.

- A grading system must incorporate a few characteristics measurable at field/roadside.
- Characteristics must impact performance.
- Characteristics must vary, otherwise they don't need to be graded.

Energy Efficiency & Renewable Energy

3 – Technical Accomplishments: Characterization

- Grades will expand beyond composition and conversion as knowledge is gained.
- Mechanical Properties
 - Grindability
 - Flowability
 - Fluidization
 - Agglomeration
- Physical Properties
 - Density: Mass vs Energy
 - Structure
- Chemical Properties
 - Composition
 - Reactivity
- Physicochemical
 - Solubility
 - Wettability

Energy Efficiency & Renewable Energy

3 – Technical Accomplishments: BC Key Characteristics

- Used a modeling approach and literature review to identify 3 key characteristics
- Literature: Negative relationship between lignin and sugar release in literature
- Experimental Results:
 - Response: dilute-acid pretreatment and enzymatic hydrolysis sugar release
 - Predictor variables: chemical composition
 - Key characteristics: **glucan & xylan** necessary to account for sugar release
- Experiments ongoing using additional pretreatment severities and enzyme loadings

3 – Technical Accomplishments: Binning Methodology

- Binned glucan, xylan and lignin considering analytical uncertainty and variability
- Represents the maximum number of possible bins

- Variability ranges have to be feasible and industrially relevant
- Future work aimed at generating bins based on additional technical rationale (e.g., cost)

3 – Technical Accomplishments: Binning Methodology

• Example: Commercially Relevant Miscanthus

	%Glucan	%Xylan	%Lignin
Wet Chemical Composition	40.79	22.01	20.41

- Future work aimed at generating the minimum number of bins necessary for each component
- This will allow for a system more like crude oil (e.g., light, sweet compared to heavy, sour grades)

	%Glucan	%Xylan	%Lignin
Bin 1	46-43	26-24	6-9
Bin 2	43-40	24-22	9-12
Bin 3	40-37	22-20	12-15
Bin 4	37-34	20-18	15-18
Bin 5	34-31	18-16	18-21
Bin 6	31-28	16-14	21-24
Bin 7	28-25	14-12	24-27
Bin 8	25-22	12-10	

3 – Technical Accomplishments: TC Pathway

- Same technical approach for TC as BC pathway.
- 105 samples characterized
- Advanced multivariate model techniques:
 - FT-NIR spectroscopy for proximate/ultimate properties
 - Reductions in prediction error
- HTL Rheology:
 - Parallel plate viscosities showed no differences with biomass type, size, or pretreatment.
 - Developed a pumpability metric for determination of biomass slurry dewatering and plugging potential.
- Collaboration w/ CCPC & Univ. of Minnesota:
 - Deeper understanding of conversion effects

Energy Efficiency & Renewable Energy

4 – Relevance

Impact

Grades will set the price scale on the supply side, enabling creation of a market. On the demand side, grades would set the baseline for determining the necessity of preprocessing to produce conversion-ready biomass feedstocks.

Use

- A grading system can be used to evaluate biomass characteristics and preprocessing options enabling incorporation of low-quality, low-cost materials in the biofuels production process to meet cost, quality and volume goals.
- The in-depth, comprehensive characterization of biomass resources can inform the preprocessing and conversion segments on characteristics that need addressed.
- The framework established will be the basis for future expansion of grading criteria.

Industrial Stakeholders

The comprehensive characterization data of the different **grades will set the basis for the definition of feedstock specifications** for the various conversion processes in close coordination with other FCIC projects that will include the preprocessing and conversion projects.

5 – Future Work

- Develop a proxy for the TC conversion of biomass
- TC collaborations: (1) PSD & Shape, (2) thermal transport properties and (3) kinetics
- Select key properties that also could be measured using rapid, online, field deployable methods
- Bin ranges of key properties & establish consistency within grades and downstream processes
- Define roll out and implementation plan, including:
 - R&D for development of rapid, online, field deployable methods
 - Standardization
 - Quality Management & Quality Assurance

Summary

- <u>Overview</u>: A Grading System is needed since the variability of biomass resources necessitates preprocessing to produce consistent feedstocks that meet process specifications.
- <u>Approach</u>: A simple three-step procedure, including a binning methodology and an extensive network of collaborators and partners to facilitate the solution of a complex problem.
- <u>Accomplishments</u>: A framework that provides the principles for the economic and technical rationale of quality grades.
- <u>Relevance and Impact</u>: Grading not only sets the price scale for the supply side and the preprocessing needs for the demand side, but also will allow incorporation of low-cost and/or low-quality resources.

Additional Slides

Energy Efficiency & Renewable Energy

Responses to Previous Reviewers' Comments

- If your project is an ongoing project that was reviewed previously, address 1-3 significant questions/criticisms from the previous reviewers' comments (refer to the 2013 Peer Review Report, see notes section below)
 - This project began in FY16 and was not peer reviewed in FY15.
- Also provide highlights from any Go/No-Go Reviews
 - The Go/No-Go for this project has not occurred, and will be completed in March 2017.

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.

Publications

- Aston, J., Thompson, D., Westover, T. 2016. Performance Assessment of Dilute-Acid Leaching to Improve Corn Stover Quality for Thermochemical Conversion. Fuels, 186, 331-319.
- Groenewold, G., Johnson, K. Fox, S., Rae, C. Zarzana, C., Kersten, B., Rowe, S., Westover, T., Gresham, G., Emerson, R., Hoover, A. 2017. Pyrolysis Two-Dimensional GC-MS of Miscanthus Biomass: Quantitative Measurement using an Internal Standard Method. *Energy & Fuels*. DOI: 10.1021/acs.energyfuels.6b02645.
- Hu, H., Westover, T., Aston, J., Lacey, J. 2016. Process Simulation and Cost Analysis for Removing Inorganics from Wood Chips using Combined Mechanical and Chemical Preprocessing. BioEnergy Research. DOI:10.1007/s12155-016-9794-3.
- Lacey, J., Emerson, R., Westover, T., Thompson, D. 2016. Ash Reduction Strategies in Corn Stover Facilitated by Anatomical and Size Fractionation. Biomass and Bioenergy, 90, 173-180.
- Meyer, P., Snowden-Swan, L., Rappe, K., Jones, S., Westover, T., Cafferty, K. 2016. Field-to-fuel performance testing of lignocellulosic feedstocks for Fast Pyrolysis and upgrading: techno-economic analysis and greenhouse gas life cycle analysis. Energy & Fuels, 30(11), 9427-9439.

Publications

- Owens, V., Karlen, D., Lacey, J., et al. 2016. Chapter 7: Impact of Feedstock Quality on Conversion and Yields. Regional Feedstock Partnership Report: Enabling the Billion-Ton Vision. U.S. Department of Energy and Idaho National Laboratory. INL/EXT-15-37477.
- Tumuluru, J., Conner, C., Hoover, A. 2016. Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mill. Journal of Visualized Experiments, 112, 1-13.
- Wahlen, B., Wendt, L., Mohammad, R., Newby, D., Westover, T., Stevens, D., Cafferty K., Logistics Analysis of a Feedstock Blending Strategy to Manage Variability in Algal Productivity. Submitted to Algal Research.
- Westover, T., Emerson, R. 2015. Rapid Analysis of Inorganic Species in Herbaceous Materials Using Laser-Induced Breakdown Spectroscopy (LIBS). Indust. Biotechnol, 11(6), 322-330.
- Westover, T., Phanphanich, M., Ryan, J. 2015. Comprehensive rheological characterization of chopped and ground switchgrass. Biofuels, 6(5-6), 249-260.
- Williams, C. et. al. 2017. Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals in Biomass Volume Estimation and Valorization to Energy. Ed. Jaya Shankar Tumuluru. Rijeka: InTech.
- Williams, C., Westover, T., Petkovic, L., Matthews, A., Stevens, D., Nelson, K. 2017. Determining Thermal Transport Properties for Softwoods Under Pyrolysis Conditions. ACS Sustainable Chemistry & Engineering, 5(1), 1019-1025. DOI: 10.1021/acssuschemeng.6b02326.

Presentations

- Emerson, R., Westover, T., Hoover, A., Gresham, G. Rapid Screening Processes for Determining Important Quality Attributes in Biomass Using Spectroscopic Techniques. Poster Presentation, Tcbiomass2015. Nov. 2015.
- Emerson, R. "Regional Feedstock Partnership: DOE Bioenergy Feedstock Library". Regional Feedstock Partnership Close-out Meeting. Washington, DC. July 14, 2016.
- Emerson, R.; Walker, V.; Hoover, A.; Cortez, M.; Kinoshita, R.; Gresham, G., "Quantifying Biomass Feedstock Variability Using the DOE Bioenergy Feedstock Library". 38th Symposium on Biotechnology for Fuels and Chemicals, Feedstocks (III) Track. Baltimore, MD. April 27, 2016.
- Emerson, R.; Kalivas, J., "Rethinking Local Calibration using Local Adaptive Fusion Regression". SciX 2016, Rethinking Calibration. Minneapolis, MN. September 21, 2016.
- Fox, S., Emerson, R., Hoover, A., Walker, V., Gresham, G. Using the DOE Bioenergy Feedstock Library as a tool for lignin structure/property relationship research. Oral Presentation, American Chemistry Society National Meeting. San Diego, CA. March 13, 2016.
- Gresham, G., Hoover, A., Emerson, R., Tumuluru, J., Searcy, E., Kenney, K., Smith, W., Thompson, D, Yancey, N. Mobilization of Biomass: Feedstock quality. Invited Presentation, Umeå Renewable Energy Meeting 2016. Umeå, Sweden. Feb. 2016.
- Hoeger, I., Ray, A., Stevens, D., Hoover, A., Li, C., Park, S. Property Assessment of Blended Biomass Feedstocks for Biosugar Production. Poster Presentation/Rapid Fire Presentation, American Institute of Chemical Engineers (AIChE) 2015 Annual Meeting. Salt Lake City, UT. Nov. 2015.

Presentations

- Hoover, A., Stevens, D., Ray, A., Vega, L., Emerson, R., Hoeger, I., Park, S., Gresham, G. Predicting bioconversion from physical and chemical characteristics of multiple lignocellulosic biomass types. Poster Presentation/Rapid Fire Poster Showcase Presentation, 38th Symposium on Biotechnology for Fuels and Chemicals. Baltimore, MD. April 26th, 2016.
- Hoover, A., Emerson, R., Stevens, D., Ray, A., Lacey, J., Cortez, M., Payne, C., Kallenbach, R., Sousek, M., Farris, R. Effect of drought on composition and bioconversion for *Miscanthus*, mixed perennial grasses, and switchgrass as bioenergy feedstocks. Poster Presentation, 38th Symposium on Biotechnology for Fuels and Chemicals. Baltimore, MD. April 26th, 2016.
- Hoover, A., Stevens, D., Ray, A., Park, S., Hoeger, I, Emerson, R, Morgan, S., Gresham, G. Predicting Bioconversion from Physical and Chemical Characteristics of Single and Blended Lignocellulosic Biomass. Poster Presentation, American Institute of Chemical Engineers (AIChE) 2015 Annual Meeting. Salt Lake City, UT. Nov. 2015.
- Westover, T. Selected emerging market opportunities for torrefied biomass. Invited Presentation in webinar: Torrefied Biomass: New Markets, New Directions, New World. Presented by The World Bioenergy Association and the International Biomass Torrefaction Council. June 22, 2016.
- Williams, L., Westover, T., Matthews, A., Hernandez, S. Rheology of Biomass Slurries to Determine Pumpability for Hydrothermal Liquefaction. Oral Presentation, AICHE 2016 Annual Meeting. San Francisco, CA. Nov. 15, 2016.

