

Engineering Thermophiles to **Produce Drop-in Fuels from Syngas**

U.S. Department of Energy (DOE), Bioenergy Technologies Office (BETO) 2017 Project Peer Review

> Thursday, March 9, 2017 **Biochemical Conversion**

Steven M. Yannone Kiverdi, Inc.

Goal Statement:

- Goal: To develop microbial biocatalysts to convert syngas into monoterpenes.
- Outcome: The project will engineer novel metabolic capabilities into thermophilic bacteria that use hydrogen for metabolic energy and CO₂ and CO as carbon sources to produce monoterpenes useful as solvents and fuels.
- *Relevance:* Syngas feedstocks are relatively inexpensive and diverse, thermophiles have several unique advantages, and end products have value as fuel and solvent applications among others.

The diversity of feedstocks available to syngas processes (including waste) together with the continuous fermentation potential of thermophiles makes the economics of producing monoterpenes in this bioprocess highly competitive and flexible in dynamic fuel and solvent markets.

Quad Chart Overview

Project Timeline

- Start: October 1, 2015
- End: September 30, 2017 (67% Complete)

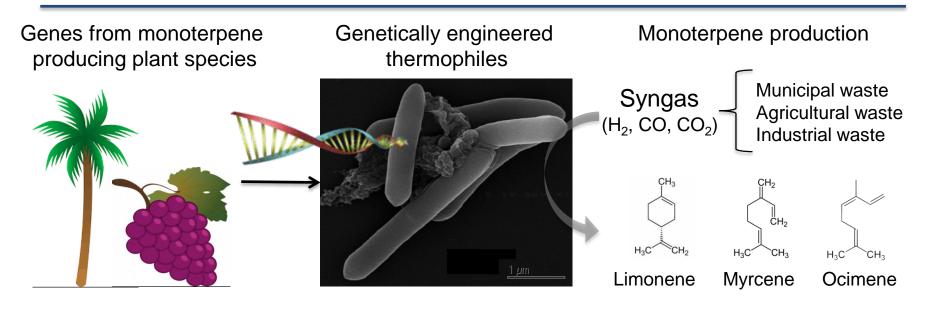
Technical Barriers

- 1) Transform carboxydotrophic thermophile
- 2) Identify thermostable monoterpene synthase
- 3) Circumvent monoterpene toxicity

Technical Target: Conversion R&D

Project Budget

	Costs FY 12 –14	FY 15 Costs	FY 16 Costs	Total Funding (FY 17- End)
DOE Funded	0	0	\$815,138	\$784,184
Project Cost Share	0	0	\$208,310	\$191,522


Partner Spending

Kiverdi (69%) NREL (31%)

Project Overview

- Identified and characterized multiple terpene synthase enzymes
- Developed analytical methods for monoterpene products
- Identified new thermophile chassis strain and verified CO consumption
- Developed vectors for thermophilic carboxydotrophic bacteria (Go/NoGo)

Applications for Monoterpenes

Project Relevance

Inexpensive and flexible feedstocks

	Coupled Syngas and Bioprocess	Industrial Solvents	Fuels
Flared Nat Gas Carbon Off-Gases Agricultural residue Wood waste	Limonene $f_{\mu,c}$ Myrcene $f_{\mu,c}$ Ocimene $f_{\mu,c}$	 Diluent Oil sand solvent Refining agent for crude petroleum Asphalt grading Industrial cleaner (e.g., marine vessels, concrete cleaners, parts washer) 	 JP-10 jet fuel substitute (dimer) Bio-gasoline Gasoline or diesel additive P-menthane (component of JP-4 / Jet B)

Additional Advantages for Bio-derived Monoterpenes:

- Non-carcinogenic and non-toxic hydrocarbon
- High energy density (37.8 MJ/L, limonene)
- Bio-degradable
- Multiple products with the same process and equipment
- Consumer and home product applications (cleaners and insecticides)

Project Management:

Lead Responsibility Enzyme engineering Biochemistry Molecular biology Project Management

Microbiology Molecular Biology Analytical Techniques Fermentation Gas Metabolism Lead Responsibility Strain selection Syngas metabolism Syngas production Fermentation

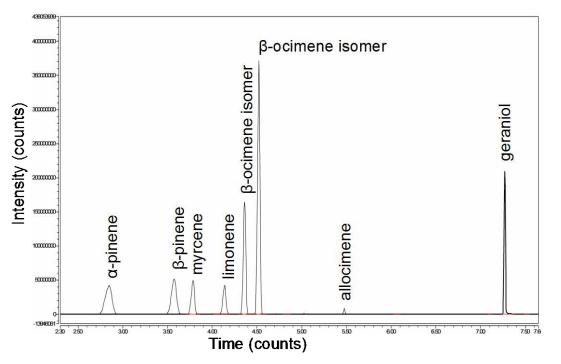
Highly cooperative team science approach. Frequent meetings and offline communication.

Technical Approach

Concurrent Development of Required Technological Components

Analytical methods – Detection and quantitation of monoterpenes Detection of substrate molecules and side products Microbiology - Identification of new chassis strain (CO consuming thermophile) Development of routine manipulation of chassis strain(s) - liquid culture, cryogenics, plating, antibiotic selection Molecular biology Identification of candidate thermotolerant Terpen synthases - Development of vectors to manipulate thermophilic chassis strain(s) - Identified promoter to drive expression and thermo-tolerant selection method **Biochemistry** - Biochemical assays to test enzyme activity, solubility, and performance - Biochemical methods to detect enzyme substrates and precursor enzymes

Converge all technical groundwork in year 2 to accomplish goals


Results: Quantitative Analytical Methods

Quantitative analytical assays developed for:

- limonene
- a-pinene
- B-pinene
- Myrcene

Geraniol and ocimene isomers can be identified but not yet precisely quantified

Limit of detection for monoterpenes pushed down to 1ng, limit of quantitation is at 10 ng Fully Resolved Analytical Detection of Monoterpenes

Identification of Candidate Genes

Literature and database searches identified set of candidate genes

Candidate genes were computationally compared, evaluated, and selected

Genes selected for cloning and evaluation

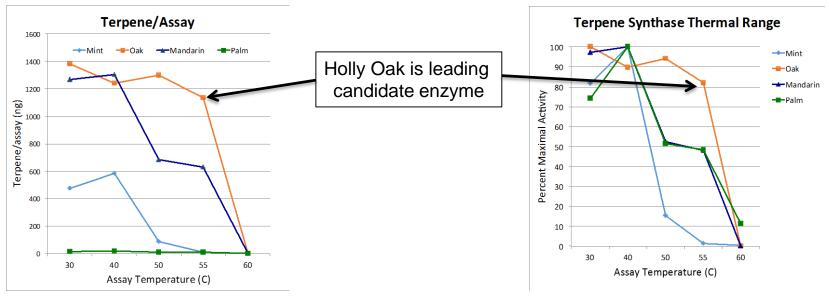
- 1) Mint limonene synthase
- 2) Mandarine orange limonene synthase*
- 3) Holly Oak pinene synthase*
- 4) Date Palm terpene synthase (ocimene)
- 5) Grape terpene synthase (new addition)

* Database annotations incorrect

Grape and holm oak terpene Synthase alignment

Query	1	MALFMLSSTSILSYSLLPPRRDFWMGKSISGKPAHPVQCVVVNRPSYETTV-RRTA MAL +L+S + ++S +P ++ +G A PVOC+V N+ S + RR+A	55
Sbjct	1	MALKLITSLPMYNFSRVPVSSKDPILLVTSRTRNGYLARPVQCMVANKVSTSPDILRRSA	60
Query	56	NYQAPIWDYDYVQSLRSDYTGETCIGRFDQLKREVKMMLGKVEKPLDQLELIDLLQRLGI NYO IW++DY++SLR +Y GETC + + LK +V+MML KV PL+OLELI++LORLG+	115
Sbjct	61	NYQPSIWNHDYIESLRIEYVGETCTRQINVLKEQVRMMLHKVVNPLEQLELIEILQRLGL	120
Query	116	SYQFEDEIKRLLNSIYCNHNIDDKWKKENLHATALEFRILRQNGYSIPQDVFSSFKDEMG SY FE+EIKR+L+ +Y N + D WK ENL+ATAL+FR+LRO+GYS+ O+VF+SFKDE G	175
Sbjct	121	SYHFEEEIKRILDGVYNNDHGGDTWKAENLYATALKFRLLRQHGYSVSQEVFNSFKDERG	180
Query	176	GFKACLSEDIQGILCLYEASYLSIEGESILEEARDFTKKHLEGCLRQNIDENLAILVSHA FKACL ED +G+L LYEAS+ IEGE+ILEEARDF+ KHLE ++ON ++NLA LV+H+	235
Sbjct	181	SFKACLED TGTL LIEAST IEGETILEEARDFT KHLE TTON TTNLA LVHT SFKACLCEDTKGMLSLYEASFFLIEGENILEEARDFSTKHLEEYVKQNKEKNLATLVNHS	240
Query	236	LELPLHWRMLRLEARWFIDAYERRQDMNPILLEFAKLDYNMVQAKHQEDLKYASRWWRST LE PLHWRM RLEARWFI+ Y OD+NPILLEFA+LD+N+VOA HO DLK S WW+ST	295
Sbjct	241	LEFPLHWRMPRLEARWFINIYRHNQDVNPILLEFAELDFNIVQAAHQADLKQVSTWWKST	300
Query	296	RLGEKLSFARDRLMENFLWTVGVIFEPQFGYCRRMLTKVNALITTIDDVYDVYGTLEELE L E LSFARDR +ENF WTVG+IF+POFGYCRRM TKV ALITTIDDVYDVYGTL+ELE	355
Sbjct	301	GLVENLSFARDR TEAF WIVGTIFFQEGICREE IKV ALIIIIDDVIDVIGILTEDE GLVENLSFARDRPVENFFWTVGLIFQPQFGYCRRMFTKVFALIITIDDVIDVIGTLDELE	360
Query	356	LFTDAVDRWDINAMDQLPEYMKICFLALYNSTNEMAYDLLKEQGSHIIAYLRKAWADLCK LFTD V+RWDINAMDQLP+YMKICFL L+NS NEMA D +KEQ HII YL+KAW DLC+	415
Sbjct	361	LFTD VTRUDINANDQLFTIMLICFL LTNS NEMA D TKEY HII ILTNA DLCT	420
Query	416	SYLLEAKWYHARYTPTLQEYLSNAWISISAPTILVHAFFFVTNPITEDALECVEQYCNII YL+EAKWY +Y P+LOEY+ NAWISI APTILVHA+FFVTNPIT++AL+C+E+Y NII	475
Sbjct	421	IL+EARWI +I F+LQEI+ NAWISI APIILVHA+FFVINPII++AL+C+E+I NII YYLVEAKWYSNKYRPSLQEYIENAWISIGAPTILVHAYFFVINPITKEALDCLEEYPNII	480
Query	476	RWSSIILRLSDDLGTSSDELKRGDVPKSIQCYMHETGASEEDAREHIKCLIGETWKKMNE RWSSII RL+DDLGTS+DELKRGDVPK+IOCYM+ETGASEE ARE+IK LI TWKKMN+	535
Sbjct	481	RWSSII RL+DDLGTS+DELKRGDVPK+LQCYM+ETGASEE ARE+LK LI TWKKMN+ RWSSIIARLADDLGTSTDELKRGDVPKAIQCYMNETGASEEGAREYIKYLISATWKKMNK	540
Query	536	DRVMESPFSQTFIGIAINLARMAQCMYQYGDGHGVQDRETKDRVLSLLIEPIPL 589 DR SPFS FI IA+NLARMAOC+YO+GDGHG+ +RETKDR+LSLLI+PIPL	
Sbjct	541	DR SPFS FI IAANLARMAQC+YQ4GDGHG+ +RETKDR+LSLLI+PIPL DRAASSPFSHIFIEIALNLARMAQCLYQHGDGHGLGNRETKDRILSLLIQPIPL 594	

67% Identity, 81% Similarity, 0% Gaps



Biochemical Evaluation of Enzymes

- Candidate genes were cloned into pET28 vectors (*E. coli* expression vectors).
- Epitope tags were added for detection of recombinant enzymes.

Amount of Active Enzyme

• Enzymes were expressed in *E. coli* and evaluated for a number of characteristics.

Thermal Stability of Enzymes

Biochemical Evaluation of Enzymes

Characterization pipeline established for recombinant enzymes

TS Construct	CBB	West.	Soluble	Activity (Insol.)	Activity (solub.)	Other Products	Product (ng)
Mint LS*							
Mint LS							
Date palm LS							*
							**
						e pinene	1564

* Ocimene quantitation is approximate

** One-off experiment has not been repeated yet

Chassis Strain Selection

Originally Proposed Strain: Chlororflexus aurantiacus

- Thermophilic green non-sulfur bacteria (40-50°C)
- Photosynthetic (anaerobically), but capable of aerobic growth in the dark
- Grows autotrophically on H₂/CO₂, and heterotrophically (organic acids, sugars)
- Putative CO dehydrogenase identified
- High natural terpenoid pathway flux (photosynthetic pigments)

Early evaluation revealed *Chlororflexus aurantiacus* to be unsuitable host for project goals.

- No/poor growth under dark aerobic conditions regardless of carbon source
- No evidence of any CO/Syngas uptake under any growth condition

Early strain vetting revealed a need to identify suitable "chassis" strain for project goals

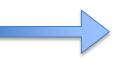
Chassis Strain Screening

12+ potential strains identified, 9 strains underwent extensive testing on criteria.

Strain evaluation criteria:

- 1) CO/Syngas consumption
- 2) Thermal range of growth
- 3) Available genome sequence
- 4) Genetic tractability
- 5) Metabolic properties (e.g. terpene flux)

Microbe	со	Aerobic/		ompon	c growth o ents (with obic strains	O ₂ for	Genetic	Genome	High flux to	Growth Temp (°C):
	uptake	Anaerobic	со	H ₂ / CO ₂	H ₂ /CO ₂ /CO	H₂/CO	tractability	Sequence	terpenes	Optimum (Min)
Chloroflexus aurantiacus	-	Both	-	+	ND	ND	?	+	+	48 (40)
Rubrivivax gelatinosus CBS	+	Both	++ +	+++	+++	+++	+	+	+	35
Cupriavidus necator	-	Both	-	+++	ND	ND	+	+	-	30
Cupriavidus metallidurans	-	Both	-	+++	ND	ND	(+)	+	-	30
Thermomicrobium roseum	+	Aerobic	-	-	-	ND	?	+	+	70 (55)
Moorella thermoacetica	+	Anaerobic	ND	ND	+	ND	(+)	+	+*	<mark>55 (4</mark> 5)
Hydrogenobacter thermophilus	ND	Aerobic	ND	+	ND	ND	?	+	?	70
Carboxydothermus hydrogenoformans	(+)	Anaerobic	ND	ND	ND	ND	?	+	+*	65 (40)
Carboxydocella thermautotrophica	(+)	Anaerobic	(+)	ND	ND	ND	?	-	ND	58 (40)
Caldanaerobacter subterraneus sp. yonseiensis	+	Anaerobic	ND	ND	ND	+	?	+	+*	75 (50)
Hydrogenibacillus schlegelii	+	Aerobic	ND	ND	+	ND	?	+	_*	65 (42)



Identification of New Chassis Strains

Variables tested during growth optimization experiments:

- 1) Autotrophic vs. mixotrophic growth
- 2) Media composition
- 3) Uptake of Syngas components (CO, H₂, CO₂)
- 4) Culture: headspace ratio (optimized gas mixing
- 5) Temperature (minimal/maximal, optimal)

35+ growth experiments for top 6 candidate strains, each lasting 3-5 days

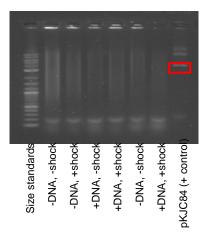
Three suitable candidate thermophilic strains identified as project chassis strains

Microbe	Aerobic/ Anaerobic	CO uptake	Growth and utilization of synthetic syngas	Genetic tractability	Genome Sequenced	High flux to terpenes	Optimum growth temp ℃ (Minimum)
Moorella thermoacetica	Anaerobic	+	+	(+)	+	+*	55 (45)
Thermomicrobium roseum	Aerobic	+	+	?	+	+	70 (55)
Caldanaerobacter subterraneus	Anaerobic	+ ed pathwa	+ iys in genomes	(+)	+	+*	75 (50)

Note: Two mesophilic backup strains also identified as contingency strains for this project.

Genetic Tool Development: Moorella thermoacetica

Transformation protocol reported in literature was not reproducible in ATCC and DSM strains.


OD600	Plasmid (1.2 ug)	Wash	Electroporation	Recovery time	Thiamphenicol (liquid medium)	Growth in liquid?	Growth in liquid after dilution? (1:25)	# colonies* (Th 10)	Protocol
0.93	pKJC84	H2O	1200 V, sq. wave	30 min	ND	ND	ND	0	Lin et al
0.93	pKJC84	H2O	1200 V, sq. wave	30 min	15	-	ND	ND	Lin et al
0.93	pKJC84	EP buffer	1200 V, sq. wave	30 min	ND	ND	ND	0	NREL
0.93	pKJC84	EP buffer	1200 V, sq. wave	30 min	15	-	ND	ND	NREL
1	pKJC84	H2O	1200 V, sq. wave	1 hr	ND	ND	ND	0	Lin et al
1	pKJC84	H2O	1200 V, sq. wave	1 hr	10	++	ND	0	Lin et al
1	pKJC84	EP buffer	1200 V, sq. wave	1 hr	ND	ND	ND	0	NREL
1	pKJC84	EP buffer	1200 V, sq. wave	1 hr	10	++	ND	0	NREL
0.142	pKJC84	Sucrose	1500 V, exp.	19 hr	ND	ND	ND	0	Kita et al
0.142	pKJC84	Sucrose	1500 V, exp.	19 hr	10	ND	-	ND	Kita et al
0.142	pKJC84	Sucrose	none	19 hr	ND	ND	ND	0	Kita et al
0.142	pKJC84	Sucrose	none	19 hr	10	ND	-	ND	Kita et al
3	pKJC84	EP buffer	1200 V, sq. wave	0	10	++	ND	0	NREL
3	pKJC84	EP buffer	1200 V, sq. wave	0	35	++	-	0	NREL
3	pKJC84	EP buffer	1200 V, sq. wave	24 hr	10	ND	+	0	NREL
3	pKJC84	EP buffer	none	0	10	++	ND	0	NREL
3	pKJC84	EP buffer	none	0	35	-	ND	0	NREL
3	pKJC84	EP buffer	none	24 hr	10	ND	++	0	NREL
3	none	EP buffer	1200 V, sq. wave	0	10	++	ND	0	NREL
3	none	EP buffer	1200 V, sq. wave	0	35	+	ND	0	NREL
3	none	EP buffer	1200 V, sq. wave	24 hr	10	ND	+	0	NREL
3	none	EP buffer	none	0	10	++	ND	0	NREL
3	none	EP buffer	none	0	35	++	-	0	NREL
3	none	EP buffer	none	24 hr	10	ND	+	0	NREL

OD600	Plasmid (1.2 ug)	Wash	Electroporation	Heat shock (71°C)	Recovery time	Thiamphenicol (liquid medium)	Growth in liquid?	# colonies* (Th 10)	Protocol
0.177	pKJC84	Sucrose	1500 V, exp.	5 min	15 min	ND	ND	?	Kita et al
0.177	pKJC84	Sucrose	1500 V, exp.	10 min	15 min	ND	ND	?	plus
0.177	pKJC84	Sucrose	1500 V, exp.	15 min	15 min	ND	ND	?	Rest et al

Outgrowth observed in selective medium after transformation

No exogenous DNA detected in cells

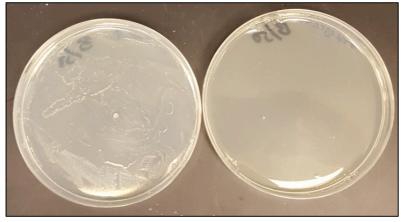
Despite a number of attempts and strategies to optimize conditions, no Moorella transformants were verified.

Genetic Tool Development: Thermicrobium roseum

Development of electroporation protocols for transformation unsuccessful to date.

OD600	Plasmid (1 ug)	Wash	Electroporation	Recovery time	Thiamphenicol (liquid medium)	Growth in liquid?
0.435	pBBR1MCS	H2O	1000 V, exp	20 hrs	15	—
0.435	none	H2O	1000 V, exp	20 hrs	15	—
0.435	pBBR1MCS	H2O	none	20 hrs	15	—
0.435	none	H2O	none	20 hrs	15	—
0.435	pBBR1MCS	Sucrose	1000 V, exp	20 hrs	15	—
0.435	none	Sucrose	1000 V, exp	20 hrs	15	—
0.435	pBBR1MCS	Sucrose	none	20 hrs	15	_
0.435	none	Sucrose	none	20 hrs	15	_

Attempts using various transformation strategies failed to result in transformants to date.



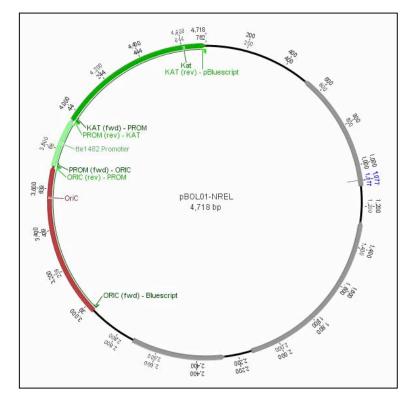
Anaerobic plating protocol developed

Antibiotic selection on plates established

- kanamycin

+ kanamycin

- C.s. tengcongensis: anaerobic thermophile that consumes CO
- Growth and transformation at 60°C
- Incubation of plates in gasket-sealed anaerobic container
- Sensitivity to 400 μg/ml kanamycin (plate and liquid)



Thermophile Genetic Tools: C.s. tengcongensis

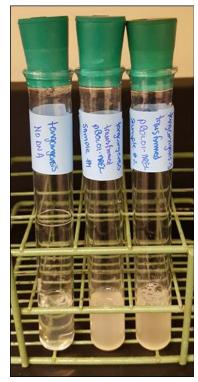
Shuttle Vector Development

- tengcongensis origin of replication
- *tengcongensis* promoter: phosphate acetyltransferase
- Thermostable resistance to kanamycin (kat):
 - from pMK18 (de Grado et al., 1998)
- Backbone: pBluescript II KS +
- Gibson assembly:
 - Designed PCR primers with Geneious software
 - PCR amplified origin and promoter from *tengcongensis* genomic DNA (Q5 polymerase)
 - PCR amplified Kat gene from pMK18
 - - Assembled fragments (NEB Gibson Assembly kit)
- *E. coli* strain JM109 for propagation:
 - recA- and endA- to improve stability
 - Amp selection, blue-white screening

Novel Vector Constructed (pBOL01-NREL)

Thermophile Genetic Tools: C.s. tengcongensis

Transformation method:


Natural competence

Grow liquid culture to OD (600 nm) 0.8-1.2 (in TTE + starch) Dilute and incubate culture +/- plasmid, 8 hours at 60°C (unshaken) (1) Apply to plates +/- kanamycin and incubate at 60°C for 66 hours Inoculate liquid +/- kanamycin, incubate at 60°C (2)

Transformants: growth on selective plates and liquid (Kan)

Four identified colonies on selective plates transferred to liquid selection and propagated

Vector:

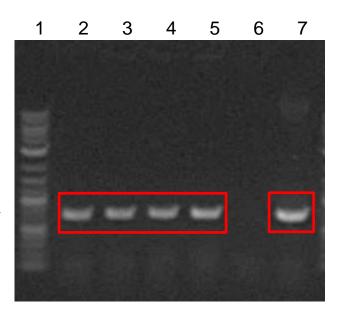
Thermophile Genetic Tools: C.s. tengcongensis

Transformed kanamycin resistance is stable

4 transformants retain antibiotic resistance when re-streaked or grown in selective liquid (400 µg/ml Kan)

No-DNA controls remain sensitive to Kan and fail to grow (mock transformations)

		and the second s	Harmstander Handerne	No EMA Hengcorgeusss	No bate + Kthroningen Heingeningen
Transformant	Transformant	No-DNA control (WT)	Transformants	WT	WT
- kanamycin	+ kanamycin	+ kanamycin	+ kanamycin	- kan	+ kan



Validation of Transformation: tengcongensis

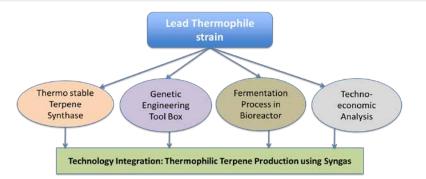
Direct probe for exogenous DNA in host strain

PCR from transformed cells to probe for thermostable kanamycin resistance gene (KAT)

PCR product of KAT gene (761 bp)

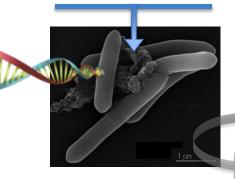
- I. Size standards-2-log ladder
- 2. Transformant #2
- 3. Transformant #3
- 4. Transformant #4
- 5. Transformant #5
- 6. Cells with no plasmid
- 7. pMK18 DNA (+ control)

Unambiguous validation of exogenous DNA present in host cells



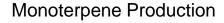
Current and Future Work

Year one accomplishments:


- New chassis strain identified
- Thermostable enzymes characterized
- Vector and transformation established
- Gas fermenttion established

Year two: Technology integration for monoterpene production from syngas.

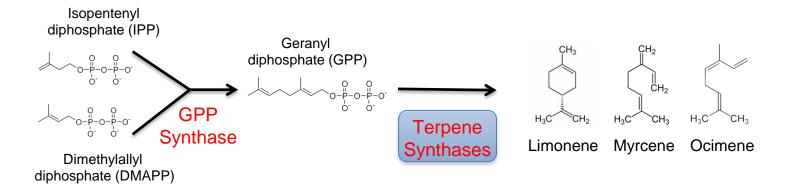
Identified Thermostable Genes


- Myrcene synthase
- Limonene synthase
- Ocimene synthase
- Limonene synthase

Validated microbial and molecular tools

- Identified chassis strain
- Shuttle vector, transformation, selection
- Functional promoter

H₂, CO, CO₂ Syngas Fermentation



Current and Future Work

Metabolic Pathway Manipulation strategy

- Clone terpene synthases into C.s. tencongensis
- Probe for monoterpene production
- Probe for GPP pools
- Probe for GPP synthase activity
- Identify thermostable GPP synthase genes

Acknowledgements

Pin-Ching Maness

Carrie Eckert

Sharon Smolinski

John Reed

Ken Zahn

Sonali Hande

Laura Huskins

