Continuous Membrane Assisted IBE Fermentation from AVAP[®] Cellulosic Sugars

March 9, 2017 Bioenergy Technologies Office 2017 Project Peer Review- Biochemical Conversion

> Theodora Retsina American Process Inc.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Thomaston Biorefinery

Project Goal Statement

Create an economically viable process for the production of butanol from the underutilized natural resources domestically available:

- economically sustainable biofuel at or below DOE target selling price
- suitable for roll-out in multiple regions containing agricultural residues and underutilized forest residuals
- able to compete in the butanol market without subsidy

Quad Chart Overview

<u>Timeline</u>

- Project start date
 - BP-1: Jul. 22, 2015
 - BP-2: Mar. 1, 2017
 - End: Nov. 30, 2017
- Pilot Startup: Nov. 1, 2016
- Percent complete: 70%

Barriers Addressed

- Ct-G. Efficient Conditioning
- Ct-J. Process Integration
- Ct-L. Aqueous Phase Utilization
- Ct-H. Efficient Catalytic Upgrading

<u>Budget</u>

- Total project funding
 - DOE share: \$3.089 million
 - Cost share: \$1.949 million
- Funding received
 - 2015: \$210,902.98
 - 2016: \$2,003,767.02

Project Participants

- Project Management
 - American Process Inc.
- L/L extraction
 - University of Maine
- Genetic Engineering: (T.B.A.)
- Sugars: AVAPCo (affiliate of API)

Project Summary Description

- This project utilizes lignocellulosic pine wood, corn stover and cane straw derived sugars from the AVAP process pilot plant in Thomaston, Georgia.
- n-butanol, isopropanol and ethanol (IBE) are produced by fermentation utilizing the AVAPCloTM strain of genetically modified *Clostridia acetobutylicum*
- IBE alcohols are approved blending components for gasoline and are upgradable to drop-in fuels
- Fermentation productivity target increased 20-fold over traditional batch process by continuous membrane assisted fermentation has been achieved for a target fermentation capital cost reduction of 50%
- Traditional steam stripping solvent recovery has been replaced with a novel non-toxic liquid/liquid extraction, targeting reduction of thermal energy use by 50%
- Recycling water, unused sugars, nutrients and metabolic intermediates back to fermentation is demonstrated from the liquid/liquid extraction raffinate

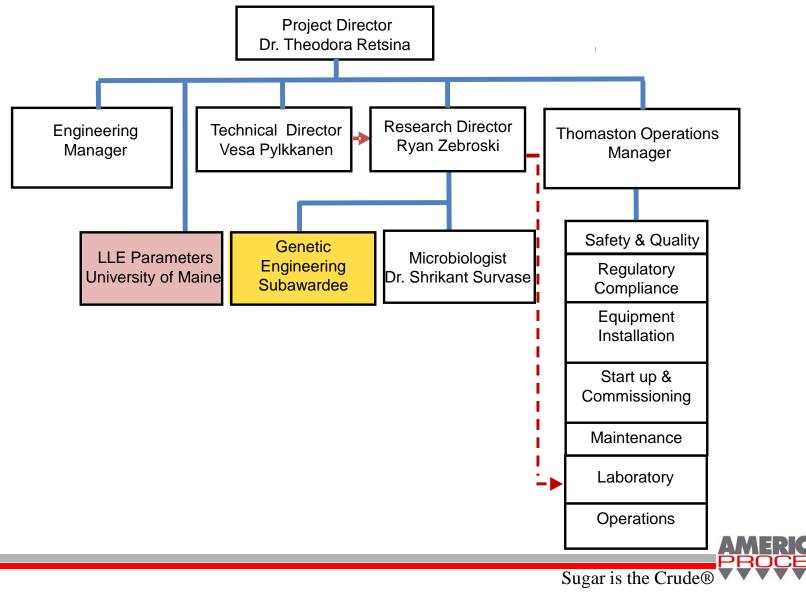
Project Overview

Challenges to overcome (background):

- Current *Clostridia* strains produce low value acetone product (30%)
- Butanol inhibits cell growth and production at very low concentration of ~2%
- Pentoses are not readily coconsumed in the mixed cellulosic sugars
- Low product titer lead to high energy demand and a large waste water volume

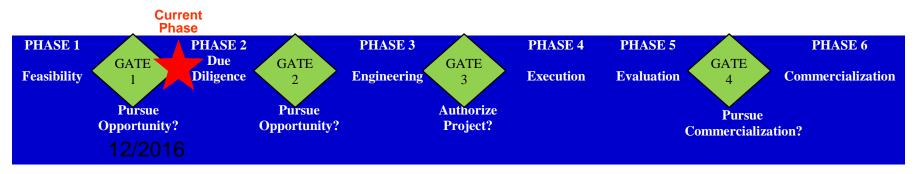
Proposed Solutions

- Use modified *Clostridium* to induce isopropanol instead of acetone
- Recycle cells in continuous fermentation to accelerate solvent production
- Filed patent disclosure for novel concurrent continuous fermentation scheme with raffinate recycle
- Use novel liquid/liquid extraction to recover alcohols from broth and reuse water



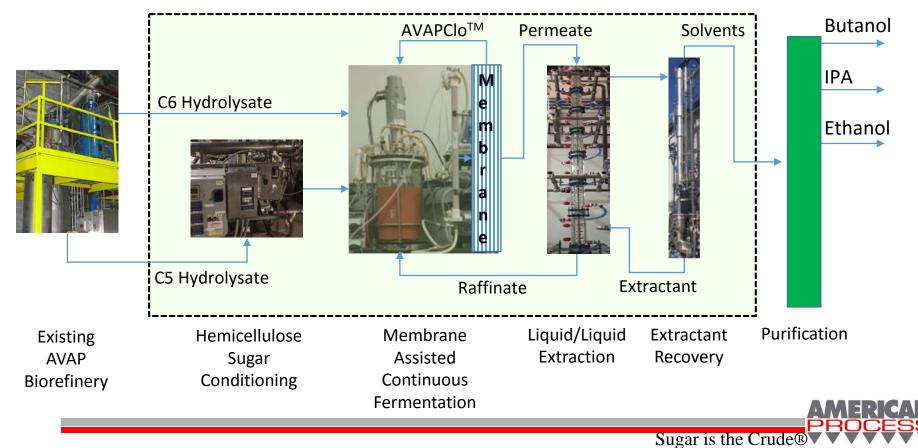
Technical Approach

- API's technical R&D plan incorporates:
- Comprehensive heat and material balance using simulation models
- Analytical tests to verify the data for baseline model
- Process optimization at smallest practical scale
- Extended performance test for robustness and recycle streams
- Process scale-up at factor of 10 with integrated operation
- Value engineering to improve project cost against a baseline that integrates techno-economic evaluation
- Use **process integration** to minimize energy demand

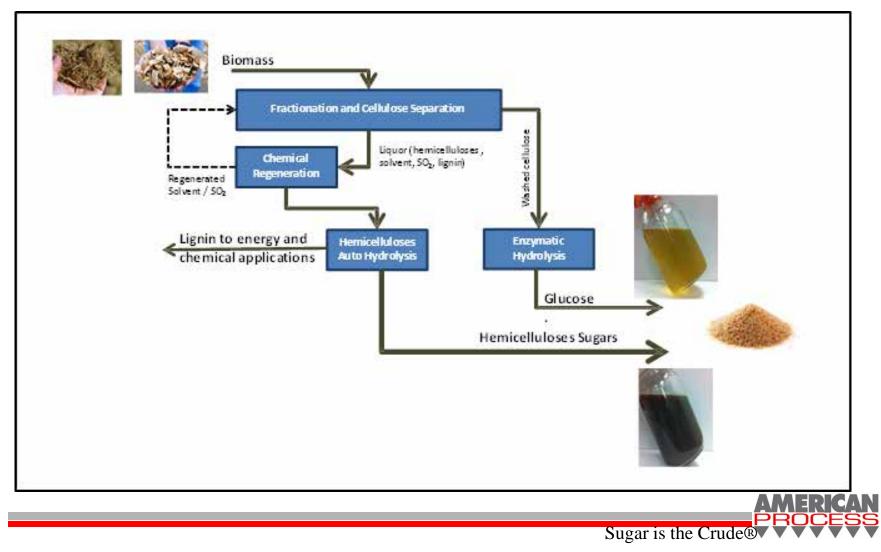


Project Organizational Chart w/ Key Personnel

Management Approach


- API's project management plan incorporates:
- Heat and material balance review at establishing project feasibility
- Basis of design document to set engineering parameters
- Process hazard analysis to foresee process risks
- Monthly budget, schedule and resource meeting
- Stage-Gate Process each defined by specific activities with milestones to decrease technical and economic uncertainty and risk

Sugar is the Crude®


Project Scope

AVAP-IBE demonstrates integrated, pilot scale IBE production from lignocellulosic sugar using membrane assisted recycle of GMO Clostridia. The pilot plant includes product recovery from the dilute broth using novel non-toxic liquid/liquid extraction.

AVAP Biomass Fractionation

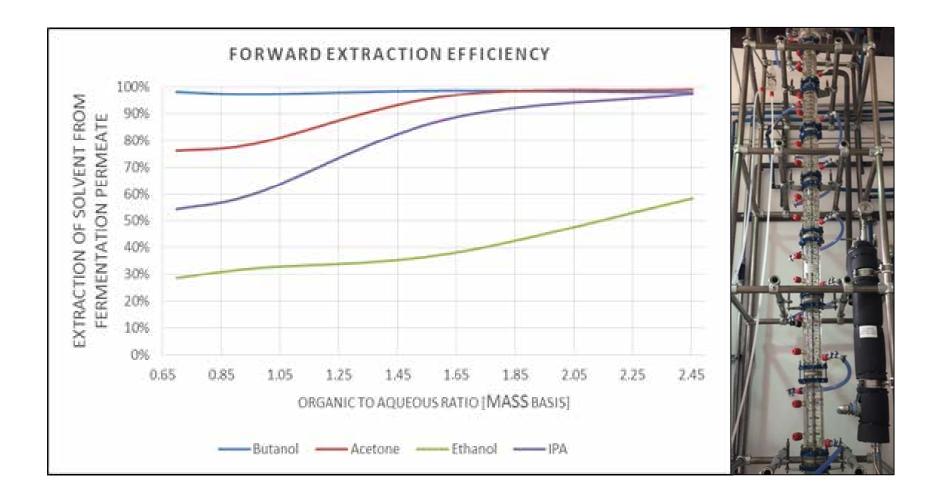
Cellulosic and hemicellulosic sugars are produced in the existing biorefinery

Critical Success Factors

- Technical Targets
 - Produce IBE alcohols at overall yield of 0.3 g/g from original biomass sugars
 - Reach average productivity of 12 g/l/h (industrial batch < 0.5 g/l/h)</p>
 - Operate integrated pilot plant 500 hours continuously
 - Recover at least 90% of butanol and 99% of the extractant in one pass
- Financial Targets
 - Reduce IBE production cost to target \$2.05/gallon
 - Maintain facility capital cost at below \$10/annual gallon

Accomplishments

- Established conditioning scheme to three biomasses
 - No conditioning was necessary for any cellulosic (C6) hydrolysate
 - Established conditioning scheme for hemicellulosic (C5) hydrolysate
- Progressively optimized fermentation parameters
 - Milestone 3.1: Fermented 500 hours uninterrupted using corn stover C6 hydrolysate
 - Reached C5 productivity equivalent to that of pure xylose in the same system
 - Reached pine C5&C6 average productivity of 10 g/l/h at 0.33 g/g yield in pilot
- Designed and operated liquid-liquid extraction column
 - Milestone 8.1: Performed 100-hour integrated run to with 97.5% butanol recovery
 - Milestone 9.3:Non-toxic extractant proved good selectivity and low solubility in water
 - Recycled half of the raffinate back to fermenter dilution with no negative impact on fermentation



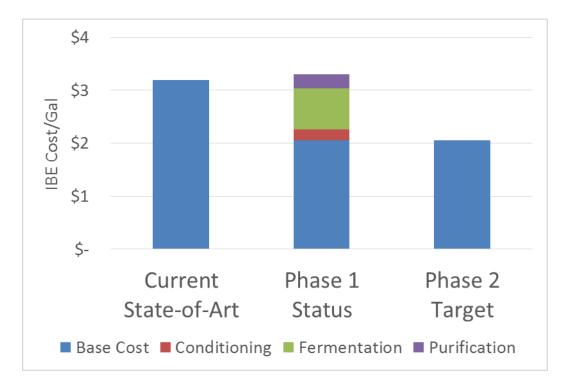
Concurrent Membrane Assisted Fermenters

Sugar is the Crude®

Liquid/Liquid Extraction

Progress Toward Technical Targets

Parameter/Performance	Unit	Target	BP1 Achieved
			AVAP Pine
Feed (hydrolyzate type)		Pine	C5&C6
Fermentation			
Total sugars to total solvents (ABEI)	g/g	0.33	0.33
Fermentation titer, total solvents	(g/L)	15	15.4
Average volumetric productivity	(g/L/h)	11	10.1
Acetone-to-Isopropanol conversion	%	>50%	14%
Maximum volumetric productivity	(g/L/h)	12	13.1
Liquid/Liquid Extraction			
Recovery of Butanol	%	90	97.5
Extractant Loss	%	1	0.1


Major Challenges

- Conversion of C5 sugars in the presence of Glucose
 - Separate hemicellulose sugar to concurrent fermentation successful
 - Grow cells in C6 fermentor and purge into C5 fermentor successful
- Conversion of Acetone to Isopropanol reduced over time
 - Use modern gene alteration to induce more isopropanol plan in place in BP2
- Pine wood hemicellulosic hydrolyzate proved more inhibitive
 - Add conditioning steps to remove lignin compounds successful
 - Optimization of the scheme under investigation ongoing in BP2
- Foaming and two phase flow through membranes—
 - Scale down industrial foam control methods in progress for BP2
- Liquid/Liquid Extraction and recycling of streams performed better that expected (beneficial effect!)

Capturing the Economic Opportunity

- Remaining IBE project gaps to target of \$2.05/gal
 - Reduce conditioning sugar loss (\$0.21/gal opportunity)
 - Convert more acetone to isopropanol (\$0.78/gal)
 - Increase product recovery rate (\$0.26/gal)

Sugar is the Crud

Relevance of AVAP-IBE Project

Supports BETO mission to create transformative technology and goal to develop commercially viable bioenergy and bioproducts by:

- Utilizing multiple feedstocks to enable nationwide implementation on existing underutilized or idle resources.
- Utilizing genetic engineering to eliminate low value by-product
- Increasing productivity and reducing energy leading to target DOE MFSP \$3/gge
 - Develop a novel fermentation scheme with productivity 20X over batch fermentation
 - Utilize a non-toxic LLX process to reduce energy use and nutrient requirements by ~50%.

The R&D on specific biomass conversion technology supports objectives by:

- Demonstrating robust fermentation technology suitable for bacteria
- Developing novel separation technology for butanol separation
- Intensifying of an integrated cellulosic biofuel process

Future Work – R&D

Conditioning sizing and optimization

- Screen four conditioning steps in different configuration for the C5 sugars and ferment in continuous mode to determine most cost effective treatment
- Develop sizing criteria for the conditioning equipment

Genetic Engineering

- Increase AVAPCloTM propensity to produce isopropanol instead of acetone
- The goal is to eliminate acetone production all together

Milestone 9. Five-hundred hour integrated pilot run - May 2017

- Test system performance in the final configuration
- Obtain operability and fouling information over long run

Expected outcomes

- Successful demonstration of the pilot plant confirming the targets
- Data collected for the engineering phase

Future Work – Engineering and TEA

Milestone 10. Engineering -Update Basis of Design Document - 8/2017

- Value engineering and major equipment data sheets
 - Capital Cost Estimation
- Process Integration
- Integrated Process Simulation (Heat and Material Balance)
 - Operating Cost Estimation

Milestone 11. Life Cycle Analysis - 11/2017

Milestone 12. Techno-Economic Analysis - 11/2017

- Sensitivity
- Market Study

Expected Outcomes

- Mixed alcohol yield of 69 gal/dry ton from softwood feedstock
- IBE production cost for commercial \$2.05/gal
- Profitable at 1200 dry tons per day biomass feedstock at \$65/ton

Summary

• Relevance:

- The AVAP-IBE intensified process is suitable for higher alcohol production
- Replication potential for other fermentation/purification processes
- **Approach:** API uses proper R&D scale-up followed by TEA in a Stage-Gate Process to ensure that project is aligned with the critical success factors

• Success factors:

- Integrated process with overall yield 0.3 g/g of yield lignocellulosic sugars
- Continuous fermentation productivity of 12 g/l/h to halve Capital Expense
- Low energy LLX with >90% butanol removal at <1% extractant loss
- Commercial target OPEX: \$2.05/gal, CAPEX: <\$10/annual gallon alcohols

• Accomplishments:

- Continuous fermentation at 10 g/l/h productivity and 0.33 g/g solvent yield
- Integrated extractant recovery of 99.9% with 97.5% of butanol removed

• Commercialization challenges:

- Profitability at low oil price without a co-product
- Competition of sugars for cellulosic ethanol

