Water Power Technologies Office Peer Review Marine and Hydrokinetics Program

AQWA model

Wave Energy Converter Structural Optimization Through Engineering and Experimental Analysis

Ken Rhinefrank - PI

Columbia Power Technologies, Inc. krhinefrank@columbiapwr.com 541.760.1833 February 2017 Wave Energy Converter Structural Optimization through Engineering and Experimental Analysis

The Challenge:

Materially decrease the levelized cost of energy for a wave energy converter (WEC) through improved power-to-weight ratio (PWR) performance.

Partners:

Ershigs

National Renewable Energy Laboratory (NREL)

Program Strategic Priorities

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Deployment Barriers

- Identify potential improvements to regulatory processes and requirements
- Support research focused on retiring or mitigating environmental risks and reducing costs
- Build awareness of MHK technologies
- Ensure MHK interests are considered in coastal and marine planning processes
- Evaluate deployment infrastructure needs and possible approaches to bridge gaps

Market Development

- Support project demonstrations to reduce risk and build investor confidence
- Assess and communicate potential MHK market opportunities, including off-grid and non-electric
- Inform incentives and policy measures
- Develop, maintain and communicate our national strategy
- Support development of standards
- Expand MHK technical and research community

Crosscutting Approaches

- Enable access to testing facilities that help accelerate the pace of technology development
- Improve resource characterization to optimize technologies, reduce deployment risks and identify promising markets
- Exchange of data information and expertise

Cost improvement through innovative hull structure R&D

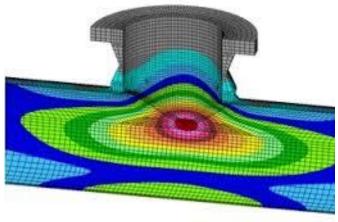
Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and

maintenance

- Conduct R&D for Innovative MHK components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

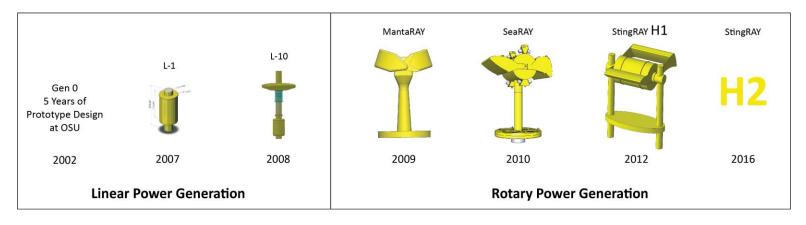
Improvement Goal				
AW PWR	DW PWR			
64%	15%			


Project Impact:

- Advances technical performance
 of StingRAY WEC
- Delivers hull design for Wave Energy Test Site (WETS) deployment
- Industry-pioneering advancement of composite hull structures

Technical Approach

ENERGY Energy Efficiency & Renewable Energy


- Hull design optimization to improve energy capture and lower capital cost
 - Baseline hull design (H1) was product of separate DOE project
 - Focus on top-end mass reduction and lowering center of gravity
 - Similar to wind turbine design
 - Advantage from substitution of lower-cost materials
- Finite Element Analysis (FEA) confirmed by physical testing
 - Design Load Cases (DLC) consider appropriate range of
 - Environmental conditions
 - Design and operational situations
 - Limit states
 - Load confirmations intended to allow smaller design margins and lower cost

Accomplishments and Progress

- Optimized H2 design concept offers significant PWR improvement
 - H2 WEC hydrodynamic model has been developed
 - DLCs established and load calculations modeled and reviewed
 - Hydrodynamic simulations run with post-process analysis
 - Hull design concept delivered for WETS deployment
- Improved core competencies in design analysis
 - Internal FEA capabilities and expertise have been developed

Project Plan & Schedule

Energy Efficiency & Renewable Energy

- Period of Performance: 10/01/14 09/30/17
 - Extension discussions underway
- Schedule delays
 - Vendor strategic change
 - Scope modifications and increase
 - Internal resource constraints
- Go/No-Go decision point for Budget Period 1 expected in Feb/Mar 2017
- Budget Period 2 plans
 - Comprehensive H2 design assessment and review
 - Select, design, and test structural components

Budget History								
FY2014		FY2	FY2015		FY2016			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
		\$232K	\$58K	\$141K	\$145K			

- Scope modifications and increases
 - CPower took over FEA and design load modeling; new requirement to build appropriate internal capacity and expertise
 - Insertion of modeling and design of advanced H2 concept conceived ex-Project
- 118% of BP1 budget expended, CPower absorbing cost of increased scope
- No external cost-share

Total Project Budget								
BP1		BP2 (pending go/no-go)		Total (pending BP2 go/no-go)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$373K	\$203K	\$350K	\$116K	\$723K	\$319K			

Partners, Subcontractors, and Collaborators: Ershigs – Structural assessment and design NREL – Physical testing facilities and support

Communications and Technology Transfer:

- 2016 IEEE Power and Energy Society General Meeting—July 2016
- CPower-NREL Open House at National Wind Technology Center—November 2016
- Small Business Voucher (SBV)—NREL and Sandia National Laboratories

FY17/Current research:

- H2 structural design and assessment
- Physical testing
 - Selection of test articles
 - Test Plan execution
 - Analysis and possible incremental FEA effort
- Deliverables
 - System Structural Report
 - Test Article Design Report
 - Continuing Application
 - BP2 Reporting

Proposed future research:

- Incremental FEA effort Sandia/NREL SBV
- Focus on structural FRP manufacturability