Water Power Technologies Office Peer Review Marine and Hydrokinetics Program

Energy Efficiency & Renewable Energy

Survivability Enhancement Of A Multi-Mode Point Absorber

Tim R. Mundon

TRITSN

Oscilla Power mundon@oscillapower.com February 2017

Survivability Enhancement Of A Multi-Mode Point Absorber:

This project will reduce the cost of survivability (structural overdesign) for Oscilla Power's high performance Triton wave energy converter (WEC); resulting in reduced project risk and lower levelized cost of energy (LCOE).

Challenges:

- 1) Structural overdesign is an expensive approach to survivability in high performance WECs.
- 2) Innovative design solutions offer promise, but extensive use of validated numerical models is required to provide confidence in their effectiveness.

Increase MHK deployment in opportune markets

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK systems & components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Deployment Barriers

- Identify potential improvements to regulatory processes and requirements
- Support research focused on retiring or mitigating environmental risks and reducing costs
- Build awareness of MHK technologies
- Ensure MHK interests are considered in coastal and marine planning processes
- Evaluate deployment infrastructure needs and possible approaches to bridge gaps

Market Development

- Support project demonstrations to reduce risk and build investor confidence
- Assess and communicate potential MHK market opportunities, including off-grid and non-electric
- Inform incentives and policy measures
- Develop, maintain and communicate our national strategy
- Support development of standards
- Expand MHK technical and research community

Crosscutting Approaches

- Enable access to testing facilities that help accelerate the pace of technology development
- Improve resource characterization to optimize technologies, reduce deployment risks and identify promising markets
- Exchange of data information and expertise

Increase MHK deployment in opportune markets

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK systems & components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

The Impact

Target/Metric: Peak structural load

• The project will reduce WEC costs by reducing the requirement for structural overdesign to deal with extreme events.

Potential Impact: Reducing LCOE to enable commercial viability

 Significant cost reduction is required for commercial adoption for the Triton and potentially for other WECs.

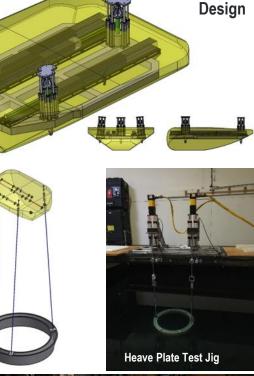
Project Endpoint: *Improved WEC design validated at 1:30 scale*

• Ideally, these improvements will be integrated into the the design phase of our community-scale project in Hawaii.

Technical Approach

Energy Efficiency & Renewable Energy

Baseline Triton


U.S. DEPARTMENT OF

ENERGY

Technical Approach

- Define baseline design, develop metrics to allow progress measure
- Develop capability to test physical heave plate models.
- Identify innovative survival strategies and associated costs
- Develop validated (by physical modeling and computational fluid dynamics) numerical models at increasing fidelity
- Use third-party experts to aid with Failure Modes and Effects Analysis as well as concept evaluation and down-selection
- Numerically evaluate survival strategies, focusing on impacts on performance and cost
- Demonstrate performance of selected strategy in 1:30 physical models

3D Printed Heave plates at 1:36 to 1:75 scales

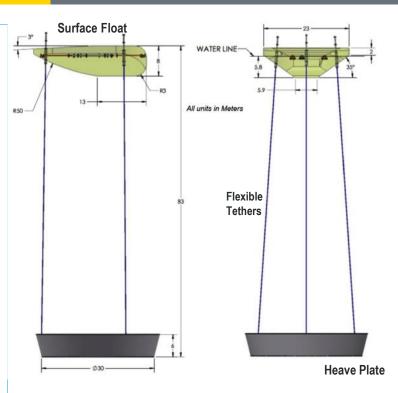
Technical Approach

ENERGY Energy Efficiency & Renewable Energy

Key Issues

- A WEC's structural response in extreme waves is highly non-linear and thus very challenging to model numerically.
- Oscilla Power's high-performance Triton WEC is particularly complex to model due to the coupled nature of the multiple power-take-offs and heave plate geometry.
- Triton's flexible tether system must be designed to eliminate slack tether events.
- Accurate numerical representation is critical to enable alternate approaches to be evaluated time-effectively and to understand system fundamentals.

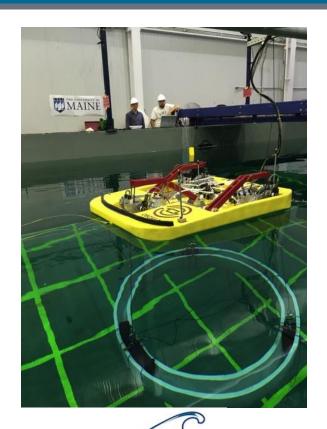
Unique Aspects of Approach


- Cost impact of survival strategies being evaluated as cost vs. sea state curves to aid comparison and connection to LCOE
- Design of Oscilla Power's unique heave plate requires and has enabled an improved fundamental understanding of heave plate hydrodynamics
- Combined numerical approach by Sandia is important to enable full exploration of performance across extreme wave contour
- Dynamic physical model tests will more accurately validate the survival approach and numerical models

Accomplishments and Progress

Energy Efficiency & Renewable Energy

- Baseline system defined
 - Baseline performance metrics determined to allow quantification of project improvements
 - Identified baseline LCOE and CAPEX
 - Developed greater understanding of system for future reduction in LCOE
 - Rudimentary survival strategy developed
- Heave plate test facility created and used to derive coefficients and scale relationships
 - Enables improved numerical modeling and calculation of LCOE and system metrics
- Contracting complete with Sandia and NREL, and initial data parameter package substantially complete.



Project Plan & Schedule

Energy Efficiency & Renewable Energy

- Project Start: April 1 2016
- Planned Completion: Sep 30 2017
- 18-month project without Go/No-Go decision points
- Oscilla Power's substantial efforts on the Wave Energy Prize has delayed progress on initial tasks
- Now that the Wave Energy Prize competition is complete, we are catching up and are striving to complete the project close to the original target date
- Project outputs will be disseminated through conference participation and/or research papers

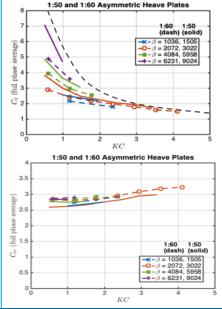
FRGY

DEPARTMENT OF ENERGY

Budget History					
FY2014		FY2015		FY2016	
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share
\$0k	\$0k	\$0k	\$0k	\$93.486k	\$23.372k

- Other than aforementioned delays, the project plan has not changed since the project started.
- Approximately ~16% of the budget has been expended which is is commensurate with the current project progress.
- Our cost share on this project is supported by funding raised from investors.

Energy Efficiency & Renewable Energy


U.S. DEPARTMENT OF

ENERGY

Communications and Technology Transfer:

- Work completed on understanding the Heave Plate hydrodynamics has been presented at the International Conference on Ocean Energy conference.
- This has initiated extended dialogue on some of the challenges and helped identify possible future collaborations (University of Washington and University of Maine)

FY17/Current research:

- Project completion is planned for Sept/Oct 2017.
- To mitigate initial lost time, numerical modeling and system engineering tasks will be parallelized where feasible from an execution perspective.

Proposed future research:

- Further refinement and dissemination to the industry through MHK Data Repository of the numerical approaches used in developing the numerical models used in this project can help other WEC developers
- Incorporation of the successful strategy into the Triton-C community scale WEC being demonstrated in Hawaii as part of a recent DOE (1418 Funding Opportunity Announcement) award