

State of the Art of PGM-free Catalyst Activity and Durability

Piotr Zelenay

Los Alamos National Laboratory

Energy Efficiency & Renewable Energy

ElectroCat Workshop, Argonne National Laboratory – July 26, 2016

- ORR electrocatalyst performance targets for automotive fuel cell applications
- Activity and durability of PGM-free catalysts
- Durability main trends
- Performance vs. cost
- Alkaline environments (as an example of PGM-free catalysts application in systems alternative to low-temperature PEFC)
- Summary

PGM-free *vs.* **PGM** Cathodes: Targeting Competitiveness

Technical Targets: Electrocatalysts for Transportation Applications						
Characteristic	Units	2015 Status	2020 Targets			
Platinum group metal total content (both electrodes)	g/kW (rated, gross) @ 150 kPa (abs)	0.16	0.125			
Platinum group metal (PGM) total loading (both electrodes)	mg _{PGM} /cm ² (electrode area)	0.13	0.125			
Mass activity	A/mg _{PGM} @ 0.9 V _{iR-free}	> 0.5	0.44			
Loss in initial catalytic activity	% mass activity loss	66	< 40			
Loss in performance at 0.8 A/cm ^{2*}	mV	13	13 < 30			
Electrocatalyst support stability	% mass activity loss	41	< 40			
Loss in performance at 1.5 A/cm ²	mV	65	< 30			
PGM-free catalyst activity	A/cm ² @ 0.9 V _{IR-free}	0.024 A/cm ² > 0.044*				

*Target is equivalent to PGM catalyst mass activity target of 0.44 A/mg $_{\rm PGM}$ at 0.1 mg $_{\rm PGM}$ /cm²

PGM-free containing MEAs need to meet DOE performance and durability targets

Activity and Durability of PGM-free Catalysts

INRS Montreal: ORR Activity of MOF-derived/Fe-based Catalysts

High power density, in excess of 0.9 W cm⁻², obtained in an H_2 - O_2 fuel cell with a Zn-MOF-derived catalyst

Los Alamos
NATIONAL LABORATORY

ElectroCat Workshop, National Laboratory Capabilities - Slide 5

Synthesis of PGM-free Catalysts

PANI-family of catalysts, combining high activity and selectivity with promising stability and low cost

Los Alamos

NATIONAL LABORA

Advanced (CM+PANI)-Fe-C Catalyst

- Improved ORR activity achieved through modifications to (CM+PANI)-Fe-C catalyst synthesis and improvements in electrode design, enhancing O₂ transport within the catalyst layer
- 0.044 A cm⁻² reached at **0.87 V** (*iR*-free) in the H_2 - O_2 fuel cell test

ANL MOF-derived Catalyst in Carbon Nanofibrous Network

ElectroCat Workshop, National Laboratory Capabilities - Slide 8

NATIONAL LABORATORY

Electrocatalysis Consortium

University of New Mexico Templated Catalysts

Enhanced fuel cell performance achieved through templating synthesis method

ElectroCat Workshop, National Laboratory Capabilities - Slide 9

Sahraie et al., Nat. Commun. 6:8618, 1-9, 2015

- High ORR activity demonstrated in both acid and alkaline electrolytes in RDE testing
- Much lower performance recorded in the fuel cell, pointing to observed at times discrepancies between RDE and fuel cell data in the field

Technical University Berlin Modified PANI-Fe-C: Durability

RDE

Good durability measured with RDE not demonstrated in fuel cell measurements

Los Alamos
NATIONAL LABORATORY

Fuel Cell

ElectroCat Workshop, National Laboratory Capabilities - Slide 11

University at Buffalo: Atomically Dispersed Fe-based Catalyst

trocatalysis Consortium

- UB unsupported catalyst derived from a homemade "Fe-MOF" precursor; unique cubic morphology preserved after heat treatment; all Fe atomically dispersed
- High ORR activity in H₂-air (0.075 A/cm² at 0.80 V) and H₂-O₂ fuel cell (0.87 V at 0.044 A/cm², *iR*-free)
- Initial testing (April 2016) revealing for the first time very promising performance durability of a non-PGM catalyst under viable fuel cell operating conditions: **ambient air feed** and **high voltage** (0.70 V)

ElectroCat Workshop, National Laboratory Capabilities – Slide 12

PGM-free catalysts to reduce cost

ENERGY | Energy Efficiency &

Nancy Garland, EFCF2015 Presentation, Lucerne, Switzerland, July 2015; https://www.hydrogen.energy.gov/pdfs/review15/fc000_papageorgopoulos_2015_o.pdf.

Durability – Main Trends

Northeastern University Fe-MOF Catalyst: Cycling Durability

Little performance loss observed following 10,000 cycles between 0.6 and 1.0 V in N₂

Electrocatalysis Consortium

• Severe loss after cycling between 1.0 and 1.5 V (to mimic startup/shutdown conditions)

INRS and University of Montpellier MOF Catalysts: Fuel Cell Durability

ElectroCat Workshop, National Laboratory Capabilities - Slide 16

Los

NATIONAL LABOR

Los Alamos PANI-Fe-C Catalyst: Cycling Durability

RDE: 0.6 mg cm⁻² PANI-Fe-C ORR catalyst, 900 rpm; 25°C; reference electrode: Ag/AgCl, (3 M NaCl); counter electrode: graphite rod; steady-state potential program: OCP, 300 s, 30 mV steps, 30 s/step; Cycling: N₂, 0.6-1.0 V, 50 mV/s.

Typical behavior: While showing good potential-cycling stability in N₂ atmosphere, PGM-free catalysts tend to lose performance much faster in air or O₂ (*ca.* 80 mV at $E_{\frac{1}{2}}$ in the case shown).

Performance vs. Cost

DFMA Cost Analysis of Stack with PGM-free vs. PGM Cathodes

Category	PANI		Ternary NSTF	
Catalyst	PANI-C-Fe		PtMnCo/NSTF	
\$/kg catalyst	\$74 - \$129/kg		<i>ca.</i> \$41,000/kg	
Loading	4.0 mg/cm ²		0.153 mg _{Pt} /cm ²	
Catalyst used	383 g/system		22 g/system	
Catalyst cost at baseline conditions and 500,000 systems/year	\$28/system		ca. \$900/system	
Stack Cost for 80kW _{net} system and 500,000 systems/year	Requires 2 stacks; 372 cells per stack at 377 cm ² /cell		Requires 1 stack; 372 cells per stack at 299 cm ² /cell	
Power Density	330 mW/cm ²	475 mW/cm ²	834 mW/cm²	
\$/kW_{net} for 500,000 systems/year	\$31.3/kW _{net}	\$24.2/kW _{net}	\$24.2/kW _{net}	SA

Initial Design for Manufacture & Assembly (DFMA) cost analysis by Strategic Analysis highlighting the need for improved PGM-free catalyst activity.

- Preliminary analysis of PANI-Fe-C cost confirming major per-stack cost advantage of non-PGM ORR catalysts over the state-of-the-art Pt-based catalysts (a factor of *ca.* 30)
- Specific power density of non-PGM MEAs in need of improvement from the current level of < 500 mW cm⁻² in order for catalyst cost to make significant impact on the stack cost

Parametric Study of Cathode Performance

Normalized Site Density

- Increase in active site density/activity needed for power density targets at optimal thickness:
 - 15× for 0.4 W/cm² at 0.70 V
 - 5× for 0.5 W/cm² at 0.60 V
- Key properties for electrode development:
 - More electrode hydrophobicity to reduce flooding
 - Higher conductivity or lower tortuosity of the ionomer

ElectroCat Workshop, National Laboratory Capabilities - Slide 21

Alkaline Environment

Chung et al., Nat. Commun. 4:1922, 2013

High ORR activity and durability demonstrated in alkaline electrolyte in RDE tests

PGM-free HOR Catalysts for AMFCs: Status vs. PGM Catalysts

Steady state polarization curves of the HOR on electroplated **Ni**, **NiMo**, **CoNiMo** and **Pt** disk. Ratios specified correspond to atomic ratios of metals in the plating solution.

Performance of an H_2 - O_2 AMFC using PtRu or Pt anode at 60°C; aQAPS-S₈ membrane; Pt/C cathode; metal loadings of both electrodes 0.4 mg/cm²; 1.0 bar backpressure

- While offering promising RDE performance state-of-the-art PGM-free anode catalysts still suffer from high HOR overpotential and degradation of PGM-free HOR catalysts
- HOR performance of the best PGM catalysts indicating high losses at the AMFC anode relative to the PEFC anode

State of the Art in PGM-free ORR Electrocatalysis: Summary

- According to automotive OEMs, PGM-free ORR catalysts will bring value to fuel cell systems for cars if they meet performance targets established for PGM catalysts
- In spite of impressive progress achieved in the past decade, PGM-free catalysts need further advancement to meet the above goal. The main challenges of the technology are:
 - (a) low ORR activity in the MEA
 - (b) limited durability
 - (c) heavy reliance on Fe-derived materials
- The acceleration of progress in PGM-free ORR electrocatalysis critically depends on focused catalyst design, guided by multi-scale modeling methods and facilitated by high-throughput methodologies for synthesis and screening, both of which are based on fundamental knowledge of reaction mechanisms and of catalyst design and synthesis.
- PGM-free ORR catalysts are highly attractive for other fuel systems, including AMFCs (high activity and stability), DMFCs (tolerance to methanol), PAFCs and HT-PEFCs (tolerance to phosphates)

Design for Manufacture & Assembly Cost Analysis: Catalyst Process

DFMA Cost Analysis: Breakdown by Step & Volume

Manufacturing Cost (1,000 Systems/Year)

Step 1: Carbon Activation

- Step 4: Grinding
- Step 5: Rotary Kiln Pyrolysis
- Step 6: Acid Leaching
- Step 7: Oven Pyrolysis

Total cost ca. \$129/kg

Manufacturing Cost (500,000 Systems/Year)

Total cost ca. \$74/kg

ElectroCat Workshop, National Laboratory Capabilities - Slide 28

Cathode and Fuel Cell Modeling

ElectroCat Workshop, National Laboratory Capabilities - Slide 29

NATIONAL LABORATOR