U.S. Department of Energy Fuel Cell Technologies Office

ENERGY Energy Efficiency & Renewable Energy

Electrocatalysis Consortium

Polyme

Introduction of the Energy Materials Network's (EMN) ElectroCat Consortium

Water Out

Argonne National Laboratory July 26, 2016

Dimitrios Papageorgopoulos

Program Manager, Fuel Cells Fuel Cell Technologies Office U.S. Department of Energy

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 2

A materials domain with several potential application routes

Main Focus: PGM-free catalysts for transportation-based fuel cells

ElectroCat (Electrocatalysis Consortium)

Goal

Accelerate the deployment of fuel cell systems by eliminating the use of PGM catalysts

Mission

Develop and implement PGM-free catalysts by:

- **streamlining access** to unique synthesis and characterization tools across national labs
- developing missing strategic capabilities
- curating a public database of information

Problem Statement

Fuel cell system targets set to be competitive with ICEVs.

Durability <u>and</u> Cost are the primary challenges to fuel cell commercialization and must be met concurrently

Balance of Stack Sols Catalyst and Application

Durability 5,000 hours 30 seconds Start from -20 °C Start from -20 °C

Cost

Peak Energy Efficiency

Platinum
 Group Metals

PGM-free catalysts lag behind platinum in efficiency, durability, cost, and ease of integration into membrane electrode assemblies.

Strategy: Research + Tool Development Priorities

U.S. DEPARTMENT OF ENERGY Efficiency & Renewable Energy Fuel Cell Technologies Office | 5

Materials Discovery & Development	Catalysts for oxidation reduction in PEMFCs and PAFCs
	Catalysts for oxidation reduction and hydrogen oxidation in AMFCs
	Development of electrodes and MEAs that are compatible with PGM-free catalysts
Tool Development	Optimization of atomic-scale and meso-scale models of catalyst activity to predict macro-scale behavior
	High-throughput techniques for catalyst synthesis
	High-throughput techniques for characterization of catalysts, electrodes, and <i>MEAs</i>
	Aggregation of data in an easily searchable, public database to facilitate the

development of catalyst materials and MEAs

ElectroCat Steering Committee

Web-Based Consortium Access

Accelerating the Deployment of Fuel Cell Systems

The ElectroCat (Electrocatalysis) Consortium is aimed at increasing U.S. competitiveness in manufacturing fuel cell electric vehicles (FCEVs) and other fuel cell energy conversion devices by addressing the primary challenges to the widespread implementation of this technology. The precious metal electrocatalysts that are the current standard in fuel cell systems are expensive and restrict the ability to develop fuel cells that are cost-competitive with traditional hydrocarbon-based power sources. In this sense.

Working with ElectroCat

Industry and academia can engage with ElectroCat in several ways, participating through competitively selected U.S.&hbspDepartment of Energy-funded projects or via standard national laboratory

Capability information and concierge are found at: contact@electrocat.org

Core Lab Leads

U.S. DEPARTMENT OFEnergy Efficiency &ENERGYEnergy Renewable EnergyFuel Cell Technologies Office | 8

High-throughput combinatorial materials discovery, characterization and testing

Design and synthesis of PGMfree catalysts and electrodes

OAK RIDGE National Laboratory **Deborah Myers (co-director)**

Piotr Zelenay (co-director)

Huyen Dinh

Karren More

ElectroCat launched to coordinate PGM-free catalyst development and gather state-ofthe-art tools at the national labs under one umbrella for easy access by stakeholders and the research community

Thank You

Dimitrios.Papageorgopoulos@ee.doe.gov

hydrogenandfuelcells.energy.gov

12

ANL

- High-throughput characterization
- High-throughput synthesis
- Kinetic transport modeling
- Combinatorial hydrodynamic screening
- Model system synthesis and characterization
- Electrode structural modeling
- In situ and operando and nanostructure characterization

LANL

13

- Advanced fuel cell characterization techniques
- Analytical techniques for PGM-free catalysts •
- Electrochemical and fuel cell testing
- Controlled functionalization of model catalysts
- In situ fluoride and carbon dioxide emission measurements
- MEA fabrication
- Multi-scale modeling and rational design of PGM-free catalysts
- PGM-free catalyst synthesis
- X-ray characterization techniques

NREL

- High-resolution segmented cell
- Differential cell measurement of kinetics and transport
- Experimental and computational materials data infrastructure
- Thin-film high-throughput capability suite
- Cube2 sputtering and heteroatom implanting

ORNL

•

•

- Sputtering deposition of PGM-free catalysts
- Manufacturing porous electrodes
- In-situ STEM
 - High-resolution analytical STEM
 - STEM-based 3D electron tomography
 - X-ray photoelectron spectroscopy

