
Water Power Technologies Office Peer Review Marine and Hydrokinetics Program

Direct Drive Wave Energy Buoy

Ken Rhinefrank

Columbia Power Technologies, Inc. krhinefrank@columbiapr.com (541)760-1833 February 2017

Project Overview

Direct Drive Wave Energy Buoy

The Challenge:

Prepare for initial open-ocean demonstration of full-scale wave energy converter

Partners:

Ershigs Inc. DNV-GL RA

DNV-GL RC Concept Systems

Oregon State University/Northwest National Marine

Renewable Energy Center

Program Strategic Priorities

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Deployment Barriers

- Identify potential improvements to regulatory processes and requirements
- Support research focused on retiring or mitigating environmental risks and reducing costs
 - Build awareness of MHK technologies
- Ensure MHK interests are considered in coastal and marine planning processes
- Evaluate deployment infrastructure needs and possible approaches to bridge gaps

Market Development

- Support project demonstrations to reduce risk and build investor confidence
- Assess and communicate potential MHK market opportunities, including off-grid and non-electric
- Inform incentives and policy measures
- Develop, maintain and communicate our national strategy
- Support development of standards
- Expand MHK technical and research community

Crosscutting Approaches

- Enable access to testing facilities that help accelerate the pace of technology development
- characterization to optimize technologies, reduce deployment risks and identify promising markets
- Exchange of data information and expertise

Prepare utility-scale grid-connected ocean wave energy demonstration

Technology Maturity

Test and demonstrate prototypes

- Develop cost effective
 approaches for installation, grid
 integration, operations and
 maintenance
- Conduct R&D for innovative MHK components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Project Impact:

- Advancement of CPower's technical readiness for open-ocean deployment
- Increased stakeholder confidence
- 1st DNV-GL certification client, helping to establish process for industry

Technical Approach

- Prepare for open-water demonstration through risk reduction, design improvement, detailed design completion, and fabrication and logistical planning:
 - Scaled-prototype testing (FY13)
 - SCADA system design and build
 - Deployment site selection and logistics planning
 - Analytical modeling of environmental forces and associated loads
 - Full-scale wave energy converter (WEC) design
 - Independent design certification

	Severity									
Occ	1	2	3	4	5	6	7	8	9	10
10	Low	Med	Med	High						
9	Low	Low	Med	Med	High	High	High	High	High	High
8	Low	Low	Low	Med	Med	High	High	High	High	High
7	Low	Low	Low	Low	Med	Med	High	High	High	High
6	Low	Low	Low	Low	Low	Med	Med	High	High	High
5	Low	Low	Low	Low	Low	Low	Med	Med	High	High
4	Low	Low	Low	Low	Low	Low	Low	Med	Med	High
3	Low	Low	Low	Low	Low	Low	Low	Low	Med	Med
2	Low	Low	Low	Low	Low	Low	Low	Low	Low	Med
1	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low

Risk Table

Accomplishments and Progress

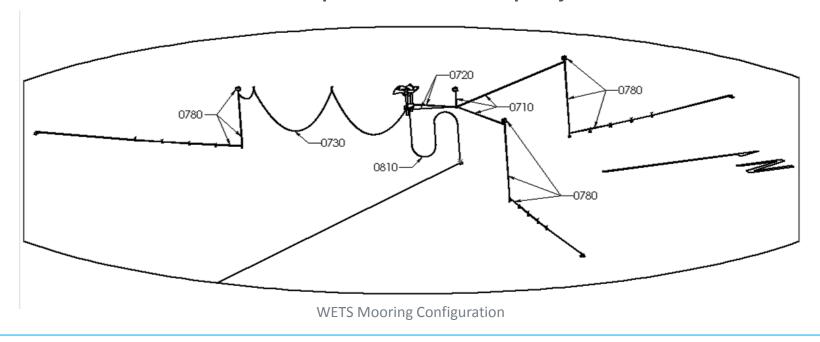
Completion of critical-path, cost- and risk-reduction tasks for open-water demonstration

- U.S. Navy's Wave Energy Test Site (WETS) selected for the openocean deployment
- Completed full-scale detailed design and validation of a novel WEC, removing end-stops
- Improved understanding of manufacturing and logistics requirements
- SCADA designed, built, tested, and installed

Pioneering DNV-GL WEC Certification

- Completion of Failure Modes, Effects, and Criticality Analysis
- Issuance of the Statement of Feasibility

Project completed FY16



Presentation of Statement of Feasibility at International Conference on Ocean Energy 2016 with U.S. Dept. of Energy, DNV GL & CPower

Project Plan & Schedule

- Project Period of Performance: 01/01/13 03/31/16
- Project delays
 - Initiated certification process with Germanischer Lloyd; acquisition by DNV caused restart of certification process
- Go/No-Go was not required for this project

Project Budget

Budget History											
FY	2014	FY2	2015	FY2016							
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share						
\$315K	\$315K	\$340K	\$340K	\$185K	\$335K						

- 100% expended
- Oregon Wave Energy Trust provided \$100K of cost share

Research Integration & Collaboration

Partners, Subcontractors, and Collaborators:

Ershigs Inc. – Structural Design

DNV-GL RA – Certification

DNV-GL RC - Certification

Concept Systems – SCADA

OSU/NNMREC – Test Facility & Support

Communications and Technology Transfer:

- 2014 DOE Water Power Peer Review, presentation and poster display
- Numerous domestic and international conferences, sharing of MHK relevant lessons learned, highlighting the v3.2 WEC design, single-point mooring and certification [Global Marine Renewable Energy Conference VI, VII; Ocean Renewable Energy Conference VIII, IX, X; International Conference on Ocean Energy 2014; OSU Marine Energy Forum; Renewable UK Wave & Tidal; IEEE Power & Energy Society 2015]

Next Steps and Future Research

Proposed future research:

- Extended use of the SCADA System in an open-ocean, grid-connected test at WETS in 2018
- WEC prototype testing
 - Universal small-scale PTO
 - Programmable mooring controller