
ENERGY Energy Efficiency & Renewable Energy

Cost-Optimized Modular Helical Rotor Turbine-Generator System for Small Hydro Power Plants

David Yee

Eaton Corporation
DavidKYee@Eaton.com 248.226.6280
15 February 2017

Cost-Optimized Modular Helical Rotor Turbine-Generator System for Small Hydro Power Plants: Develop a cost-effective Roots-based turbine-generator package to cost effectively deploy hydropower generation at existing non-powered dams and constrained waterways

The Challenge: Cost-effective solution to harvest the potential energy in existing non-powered dams and constrained waterways with low heads and flows

Partners:

- <u>Alden Research Laboratory</u>: Fish passage and debris management studies; laboratory testing of prototype turbine
- <u>Kettering University</u>: computational fluid dynamics (CFD) modeling of various turbine designs
- <u>Roush Industries</u>: CAD and finite element analysis (FEA) modeling of turbine designs
- Oakridge National Laboratory: Hydropower cost modeling

Next Generation Hydropower (HydroNEXT)

Optimization

- Optimize technical, environmental, and water-use efficiency of existing fleet
- Collect and disseminate data on new and existing assets
- Facilitate interagency collaboration to increase regulatory process efficiency
- Identify revenue streams for ancillary services

Growth

 Lower costs of hydropower components and civil works

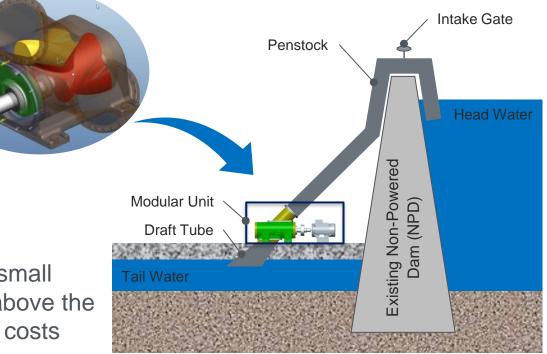
- Increase power train efficiency for low-head, variable flow applications
- Facilitate mechanisms for testing and advancing new hydropower systems and components
- Reduce costs and deployment timelines of new PSH plants
- Prepare the incoming hydropower workforce

Sustainability

- Design new hydropower systems that minimize or avoid environmental impacts
- Support development of new fish passage technologies and approaches
- Develop technologies, tools, and strategies to evaluate and address environmental impacts
- Increase resilience to climate change

Next Generation Hydropower (HydroNEXT)

Growth


- Lower costs of hydropower components and civil works
- Increase power train efficiency for low-head, variable flow applications
- Facilitate mechanisms for testing and advancing new hydropower systems and components
- Reduce costs and deployment timelines of new PSH plants
- Prepare the incoming hydropower workforce

The Impact

- Target >80% mechanical efficiency
- Target <\$2,000 per kW initial capital cost (ICC)
- Target <0.056 levelized cost of energy (LCOE)
- Enable cost-effective hydropower generation at existing non-powered dams with low head and flow
- Project Endpoint:
 - Performance testing of a sub-scale Rootsbased rotor turbine in a laboratory environment
 - Hydropower system cost modeling to evaluate the helical Roots-based turbine ICC and LCOE

Technical Approach

- Leverage Eaton's technology, manufacturing and commercial experience with Rootsbased compressors and expanders to create value in Roots-based hydro power turbines
 - Develop a Roots-based hydro power turbine that has a broad efficiency range to maximize power generation benefit

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

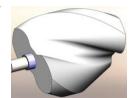
 Integrate the turbine-generator into small modular units that can be installed above the tail water to reduce system and civil costs

Value = Benefit – Cost

Increase Benefit by:

- CFD to develop a Roots-based turbine design with a broad efficiency range to maximize power generation through the seasonal head and flow cycles of a non-powered dam
 - CFD methodology proven through design of air compressors for engine intake, air management systems for fuel cells and expanders for Rankine cycle waste heat recovery

Decrease Cost by:


- Leveraging Eaton's supercharger rotor manufacturing expertise to develop a low-cost method to manufacture the hydro turbine rotors in commercial volumes
 - Solid polymer rotor versus hollow metal rotor
- Eaton's Electrical Sales and Services division to develop a costeffective modular turbine-generator package

Accomplishments and Progress

ENERGY Energy Efficiency & Renewable Energy

Developed a 2-lobe Roots-based rotor design through CFD that is predicted to achieve the target 80% mechanical efficiency

- Stresses and strains are reasonable
- Bearing forces are manageable
- Specifications for fish and debris management intake screens are commercially available.
- System Architecture Study of the turbine-generator system to develop an understanding of the trade-off in performance, versatility and cost for non-powered dam applications in the United States
 - 750mm diameter rotor, ~50kW at 12m head
- Preliminary manufacturing costs estimates suggests the Rootsbased turbine-generator is cost comparable to bulb turbinegenerator
 - Refine manufacturing process and cost estimates during Budget Period 2 (BP2)

		DE 2015			DOE FY2017			DOE FY2018				
Key Milestones	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
Project Initiation												
Go/no-go Decision												
Project Planned Completion												

- Schedule includes 6-month no-cost time extension due to:
 - Delay due to sub-recipient contract negotiations
 - Additional turbine design effort required to achieve 80% efficiency target.

Budget History									
FY2	FY2014		015	FY2016					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
		\$89K	\$25K	\$516K	\$144K				

- Variances: BP1 material costs savings for 3D printing of concept models by leverage resources in Eaton's new Additive Manufacturing Center of Excellence
- Project budget expended through FY2016: 36%
- Other funding sources: None.

Energy Efficiency & Renewable Energy

Partners, Subcontractors, and Collaborators:

- <u>Alden Research Laboratory</u>: Greg Allen, Ben Coleman, George Hecker
- Kettering University: Bassem Ramadan
- <u>Roush Industries</u>: Jim Strid, Nitin Talekar, Matt Van Benschoten, Rich Wineland
- Oakridge National Laboratory: Patrick O'Connor

Communications and Technology Transfer: None

FY17/Current research:

- Build and test a sub-scale prototype to validate CFD predicted performance and measure indications of cavitation – 8/2017
- Develop turbine cost inputs for Oak Ridge National Laboratory's (ORNL's) Hydropower Cost Model – 3/2017
- ICC and LCOE using ORNL's Hydropower Cost Model 8/2017
- Commercialization analysis report to assess commercial viability 10/2017

Proposed future research:

• Perform full-scale field installation and operation to validate turbine performance, ICC, and LCOE.