Water Power Technologies Office Peer Review Marine and Hydrokinetics Program

Energy Efficiency & Renewable Energy

Controls Optimization of Three Different WEC Devices

Mirko Previsic - Pl

Re Vision Consulting mirko@re-vision.net 916.977.3970 ext. 200 February 2017

Project Overview

ENERGY Energy Efficiency & Renewable Energy

Scope:

- Offline controls optimization of three devices
- Wave tank validation of controls
- In-ocean validation of wave prediction accuracy
- Full-Scale Demonstration on one wave energy converter (WEC) device

The Challenge:

- Attaining significant performance improvements using advanced controls (feed-forward and feed-back)
- Maturing controls frameworks to be robust and real-time capable
- Attaining good-enough wave prediction accuracy at sea

Partners:

- Resolute Marine Energy (RME)—Device Developer
- Ocean Energy USA—Device Developer
- CalWave—Device Developer
- Dresser Rand—Air-Turbine Supplier
- University of Michigan—Feedback Controls law development
- Integral Consulting—Waveprediction field-campaign in Santa Cruz

Program Strategic Priorities

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Deployment Barriers

- Identify potential improvements to regulatory processes and requirements
- Support research focused on retiring or mitigating environmental risks and reducing costs
- Build awareness of MHK technologies
- Ensure MHK interests are considered in coastal and marine planning processes
- Evaluate deployment infrastructure needs and possible approaches to bridge gaps

Market Development

- Support project demonstrations to reduce risk and build investor confidence
- Assess and communicate potential MHK market opportunities, including off-grid and non-electric
- Inform incentives and policy measures
- Develop, maintain and communicate our national strategy
- Support development of standards
- Expand MHK technical and research community

Crosscutting Approaches

- Enable access to testing facilities that help accelerate the pace of technology development
- Improve resource characterization to optimize technologies, reduce deployment risks and identify promising markets
- Exchange of data information and expertise

Project Strategic Alignment

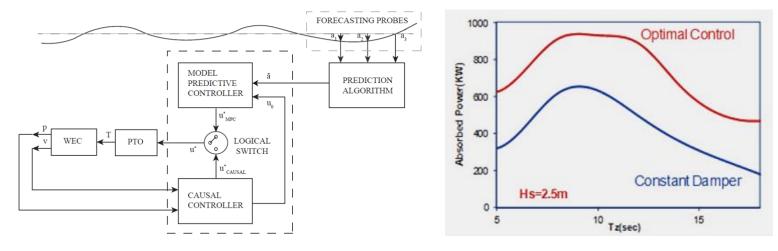
Energy Efficiency & Renewable Energy

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative
 MHK components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

The Impact

- Target Metric: System Performance Advancement II (SPAII) Target Metric—Improve power output by > 50%, resulting in a reduced levelized cost of energy (LCOE)
- Optimal Control on three WEC devices leveraging robust linear and non-linear controls methods
- Retire technical risks on optimal controls framework from Technology Readiness Level 3 (TRL3) to TRL6
- Test and validate wave prediction framework at sea
- Integrated demonstration of wave-prediction and controls at sea
- Final Product: Optimal Controller for three 3
 different WEC devices
- Proven controls building blocks that can be applied to other devices
- Reduce cost to implement optimal controls by an order of magnitude.


ENERGY Energy Efficiency & Renewable Energy

Devices being optimized:

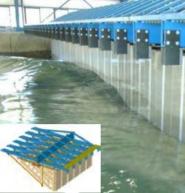
- RME Surge WEC (Resolute Marine Energy)
- CalWave WaveCarpet (CalWave)
- OE Buoy (Ocean Energy USA)

Offline Controls Optimization of three WECs

- Optimal controls using causal and non-causal control
- Investigation of different power-takeoff (PTO) options
- Separation of plant model and controls model in computational domain

Technical Approach

Wave Tank Validation of Control Strategies


- Focus on retiring fluid/structure interaction risks -
- Fully controlled PTO to allow for different controls mode implementations

Validation of Wave Prediction Accuracy at Sea

- Campaign in Santa Cruz to deploy measurement buoys _
- Five campaigns to incrementally retire technical risks while improving wave-prediction codes

Fully Integrated Demonstration

- Down-select to full-scale device at Go/No-Go
- Systems integration with PTO -
- Deployment of wave-prediction systems and controls on in-ocean _ demonstration

Energy Efficiency & Renewable Energy

Accomplishments and Progress

Energy Efficiency & Renewable Energy

- Detailed Implementation Plan
- Wave prediction field campaign started on 11-21-16
- Offline controls development effort well advanced on OE Buoy and RME Surge WEC device
- Model-build for RME device (1:10 scale) complete

Project Plan & Schedule

- Original contract period: 2-1-16 through 2-1-18
- Phase I delays due to:
 - Delayed contract execution (1 month)
 - National Environmental Policy Act permitting taking longer then expected (3-month delay)
- Go/No-Go decision point in summer 2017
- All sub-tasks on schedule to complete by Go/No-Go point

Task Name		Q1		Q2			Q3		Q4			Q1		Q2		Q3		Q4			Q1	
				Apr Ma	ay Jun	Jul	Aug	Sep C	Oct No	ov Dec	Jan F	eb Mar	Apr	May J	Jun Ju	ul Au	g Sep	Oct	Nov	Dec J	an F	eb Mar
	¢	ର୍କ୍	-7			1							1									
1. Detailed Implementation Planning								┓.														′
= 2. Resolute Marine			-																			
2.1 Controls Optimization																						
							-															
🖃 3. Ocean Energy			-																			
3.1 Controls Optimization			Ť	-								-	•									
				ļ								*										
- 4. Wave Carpet																						
4.1 Controls Optimization								-								-						
			Ī													*						
= 5. Wave Prediction System Development																				_		
5.1 Permitting			Í																			
5.2 Purchase Wave Measurement Buoys										-												
5.3 Field Measurement Campaigns										Ĭ												
5.4 Refining Numerical Codes										Ť.							-					
5.5 Robust HW/SW Real-Time Implementation																	*					

Budget History											
FY	2014	FY2	015	FY2016							
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share						
NA	NA	NA	NA	\$325k	\$81k						

- No variances from original budget
- Total DoE commitment is \$2.5M
- Expended about 10% of total budget as of FY16

Research Integration & Collaboration

Energy Efficiency & Renewable Energy

Partners, Subcontractors, and Collaborators:

- Resolute Marine Energy—Device Developer
- Ocean Energy USA—Device Developer
- CalWave—Device Developer
- Dresser Rand—Air-Turbine Supplier
- University of Michigan—Feedback Controls law development
- Integral Consulting—Waveprediction field-campaign in Santa Cruz

Communications and Technology Transfer:

- Results will be presented at upcoming conferences
- Several journal papers under development

FY17/Current research:

- Offline Controls Optimization of three different WECs
- Wave Tank Testing/Validation
- In-Ocean Wave Prediction Accuracy Demonstration

Proposed future research:

• Phase II focus on fully integrated at-sea demonstration