
Water Power Technologies Office Peer Review Marine and Hydrokinetics Program

Energy Efficiency & Renewable Energy

Build and Test of a Novel, Commercial-Scale Wave Energy Direct-Drive Rotary Power Takeoff under Realistic Open-Ocean Conditions

Ken Rhinefrank

Columbia Power Technologies, Inc. krhinefrank@columbiapwr.com 541.760.1833 February 2017 Build and Test of a Novel, Commercial-Scale Wave Energy Direct-Drive Rotary Power Take-off under Realistic Open-Ocean Conditions

The Challenge: Design, build, and test a novel power take-off (PTO) that can reliably and cost effectively produce gridcompliant power from a low-speed and dynamically variable energy resource.

Partners:

Ershigs National Renewable Energy Lab (NREL) Siemens SpenTech Greenberry Katon Northern Power Systems

Program Strategic Priorities

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Deployment Barriers

- Identify potential improvements to regulatory processes and requirements
- Support research focused on retiring or mitigating environmental risks and reducing costs
- Build awareness of MHK technologies
- Ensure MHK interests are considered in coastal and marine planning processes
- Evaluate deployment infrastructure needs and possible approaches to bridge gaps

Market Development

- Support project demonstrations to reduce risk and build investor confidence
- Assess and communicate potential MHK market opportunities, including off-grid and non-electric
- Inform incentives and policy measures
- Develop, maintain and communicate our national strategy
- Support development of standards
- Expand MHK technical and research community

Crosscutting Approaches

- Enable access to testing facilities that help accelerate the pace of technology development
- Improve resource characterization to optimize technologies, reduce deployment risks and identify promising markets
- Exchange of data information and expertise

Drive innovation in MHK-specific applications

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Targeted Improvements						
PWR	Availability	LCOE				
55%	10%	-28%				

Project Impact:

- Delivers Technology Readiness Level 6
- Advances technical performance of StingRAY wave energy converter (WEC)
- Validates wave-energy-specific electro-mechanical power take-off
- Validates novel air-gap control system for waveand, potentially, wind-market
- Delivers stakeholder confidence, risk reduction and supply chain required in support of WEC open-water demonstration

Technical Approach

ENERGY Energy Efficiency & Renewable Energy

- Design, manufacture, assembly and validation of a first-inkind PTO using experienced, highly-qualified suppliers
- Land-based test of large-scale PTO prior to WEC open ocean deployment
 - Safe, lower-risk, methodical approach
 - Modular design allows over-the-road transportation
 - Safely expose the PTO to controllable forces
 - Time- and cost-efficient exposure to wide range of operating conditions
 - Tests significant portion of supervisory control and data acquisition (SCADA) hardware and software, and PTO controls
 - Tests electric plant and small-scale energy-storage system

- 12-stage test plan
 - Stages 1–5: assembly, inspection, verification and set-up procedures for characterization of major sub-components
 - Stages 6–12: test various aspects of the generator—using IEEE and IEC test recommendations for continuous and cyclic modes of operation—and address any contingency testing

Current Issues

- High learning rate due to pioneering use of wind energy test facility for wave energy system
- Impact on team due to remote test location
- Seal manufacturing failure
- Ensuring all pre-test procedures and requirements are completed

Accomplishments and Progress

- First-in-kind utility-scale direct-drive WEC PTO
 - Organizational and test planning and final PTO design completed
 - Equipment manufactured, pre-assembled remotely, disassembled and shipped to the National Wind. Technology Center (NWTC)
 - Testing initiated
- Impact on Wave Energy Test Site.(WETS) deployment
 - Improved core competencies and confidence
 - Supply chain advancement
- Identification of areas for design and process improvement
- Metric Improvements recorded at BP1 Go/No-Go

Metric Improvements									
PWR		Availability		LCOE					
Targeted	Actual	Targeted	Actual	Targeted	Actual				
55%	60%	10%	11%	-28%	-31%				

Project Plan & Schedule

Energy Efficiency & Renewable Energy

- Period of Performance: 12/1/13 6/30/17
- Major Schedule Impacts
 - Pre-assembly of modular rotor wheel components
 - Test Stand
 - Shift from FRP to steel
 - Significant delay and increased design and material cost
 - Proof Testing
- BP2 Go/No-Go passed in 1Q16

Budget History									
FY2014		FY2015		FY2016					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$1,085K	\$271K	\$909K	\$1,341K	\$98K	\$2,022K				

- Mod 05 Budget \$5,023K
- Expected final budget ≈\$6,250K
 - Test stand cost increases
 - Substitution of steel for fiberglass
 - Logistics, proof-testing and integration with generator
 - Pre-assembly cost increases
 - Remote assembly difficulties
 - Increased time for test center integration
- 90% of expected budget expended to date
- Oregon Wave Energy Trust \$100K

Energy Efficiency & Renewable Energy

Partners, Subcontractors, and Collaborators: Ershigs, Inc. – Generator and Test Stand Structural Design NREL – NWTC Test Facility and Support Siemens – Generator Active Materials and Power Electronics Supplier Northern Power Systems – Generator Mechanical Design Greenberry – Test Stand Supplier Katon – Bearings Supplier SpenTech – Drive Shaft, Fixed Shaft, and Drivetrain Flanges Supplier

Communications and Technology Transfer:

- 2016 IEEE PES General Meeting July 2016
- CPower-NREL Open House at NWTC November 2016

FY17/Current research:

- Completion of Test Plan
- Decommissioning and Shipping
- Design Report
- System Performance Advancement and Integration Report
- Final Report

Proposed future research:

- Next generation air-gap control system
 - Improved installation and maintenance capabilities
 - Smaller air-gap
 - Reduced weight and cost
 - Application in alternative markets