
Identification and Mitigation of Droop Mechanism in GaN-Based Light Emitting Diodes (LEDs)

2017 Building Technologies Office Peer Review

Jim Speck, Speck@ucsb.edu UC Santa Barbara

Project Summary

Timeline:

Start date: July 31, 2015

Planned end date: July 31, 2017

Key Milestones

- 1. Milestone 1.5: 10% quantum yield in photoemission spectroscopy
- 2. Milestone 3.1: Determination of dominant droop mechanism in blue LEDs
- 3. Milestone 2.1: Quantification of electron diffusion length in p-GaN

Budget:

Total Project \$ to Date:

- DOE: \$789,000
- Cost Share: \$157,800

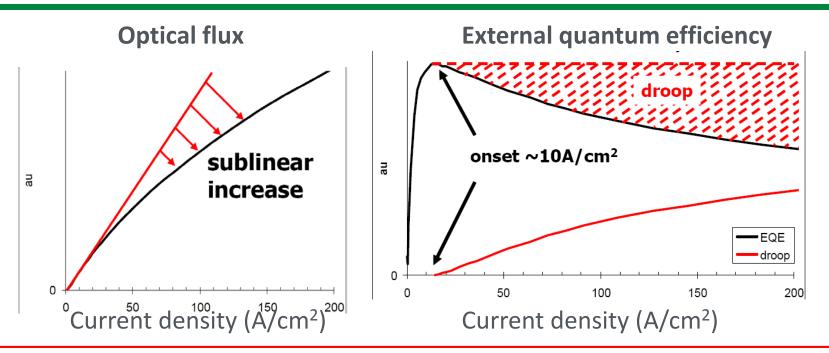
Total Project \$:

- DOE: \$1,000,000
- Cost Share: \$250,000

Key Partners:

Cree (sample supplier)

Project Outcome:


Development of a tool to directly identify the dominant non-radiative recombination mechanisms responsible for current droop, thermal droop, and the green gap in high performance LEDs used for solid state lighting.

From the DOE 2016 Solid State Lighting R&D Plan: "Emitter materials: addressing current density and thermal droop, green and red efficiency, and red thermal stability."

From the DOE BTO MYPP:

"Core technology R&D addresses efficiency, performance, and cost targets. Conducted primarily by academia, national laboratories, and research institutions, this work fills technology gaps and significantly advances the knowledge base related to LED and OLED technology"

Efficiency Droop

InGaN-based LEDs

- \rightarrow Peak EQE at 1 10 A/cm²
- → At higher current, LED rapidly lose efficiency
- ightarrow Independent of color

Potential Cause: Auger recombination (internal efficiency) ~n³

- Based on scaling of non-radiative loss experimental measurement [Shen et al. Appl. Phys. Lett. **91** 141101 (2007)
- First-principles rate indicate Auger recombination may be a significant factor

Problem Statement:

To address the fundamental challenge of identifying the origins of current droop, thermal droop, and the green gap in state-of-the-art LEDs. Understanding the origins of LED *inefficiency* will lead to more efficient LEDs.

Target Market and Audience:

Audience: U.S.-based LED manufacturers and U.S. R&D community. Target market: U.S. lighting market.

Impact of Project:

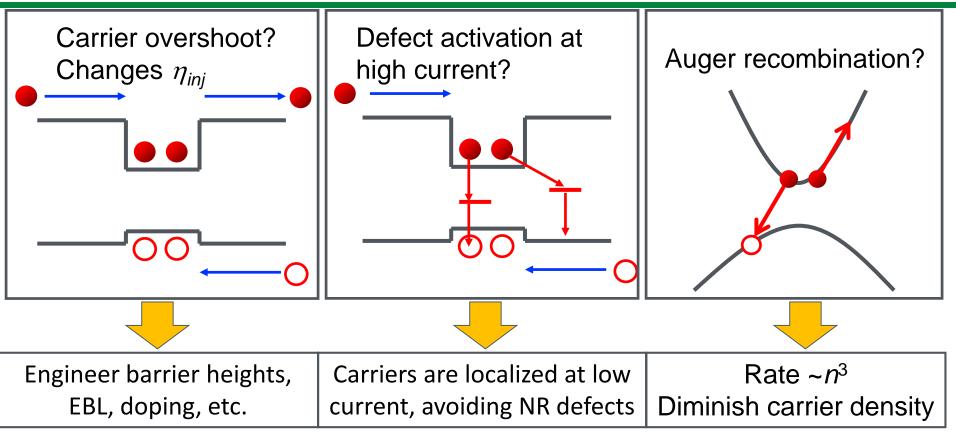
Project's outputs?

Understanding fundamental high current density performance of LEDs This understanding will yield new LED designs for more efficient lighting.

Projects contribution towards program performance and interim market goals? 1 year after project

New active region designs for LEDs for high current density operation

1-3 years after project


Advanced development of more efficient blue and green LEDs for high current density operation

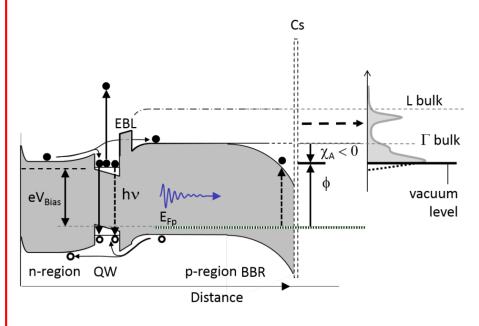
3+ years after project

Mass production of high current density operation LEDs

Approach

- Based on scaling of nonradiative loss ~n³ Auger effect been invoked [Shen 2007]
- But ... other mechanisms can also be fitted. ...
- Increasing active layer volume to decrease carrier density also decreases leakage

Until recently... no hard experimental "signature" for any mechanism



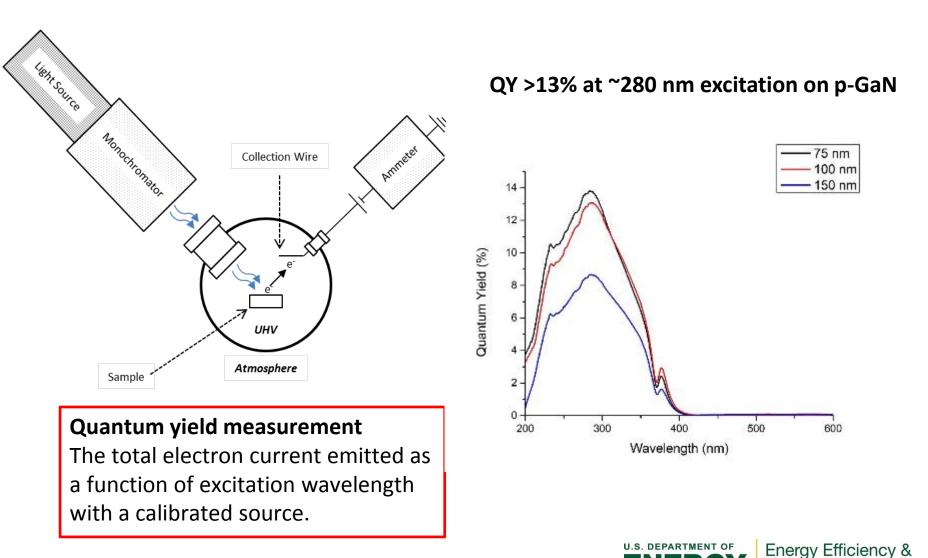
Approach

Measurements of droop mechanisms

- DC electrical or optical excitation (the 'ABC' model for EQE/IQE).
- Many uncertainties some intrinsic and essential. Modeling fails to include disorder and the change of ABC parameters with injection.
- Measurements do not observe carrier dynamics inside LEDs (except time resolved emission measurements which yield dynamics, but no direct information on carriers energies).
- Carrier transfer in EL (Vampola, UCSB) could not differentiate between carrier leakage or Auger. Recent hot carrier transfer between quantum wells by Osram in PL.

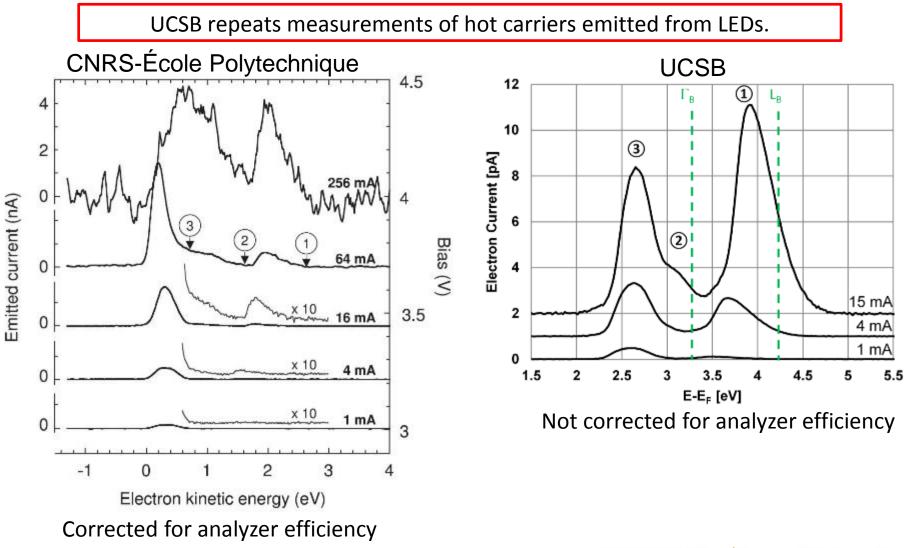
The electroemission technique

Measure electron energies and currents *inside* the LED under operation by measuring electron current and energies **outside** the LED

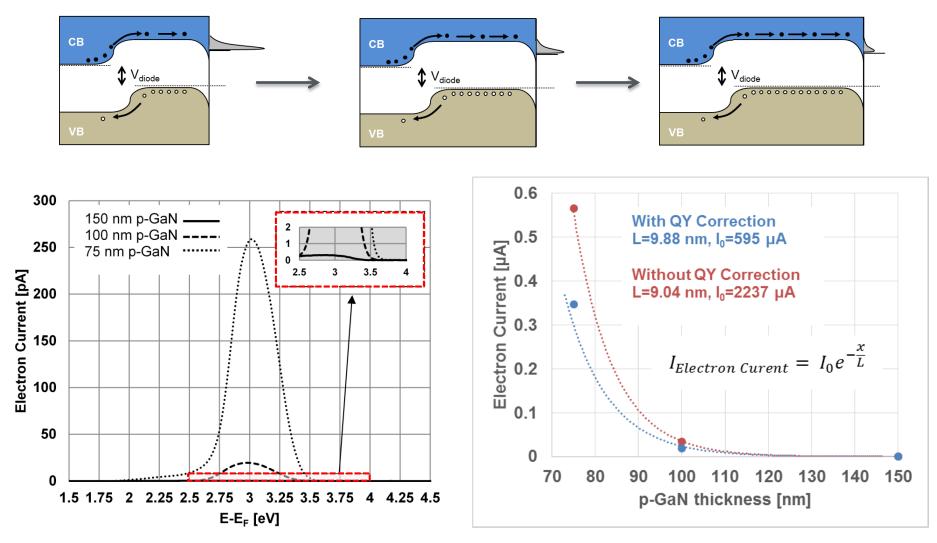


Approach

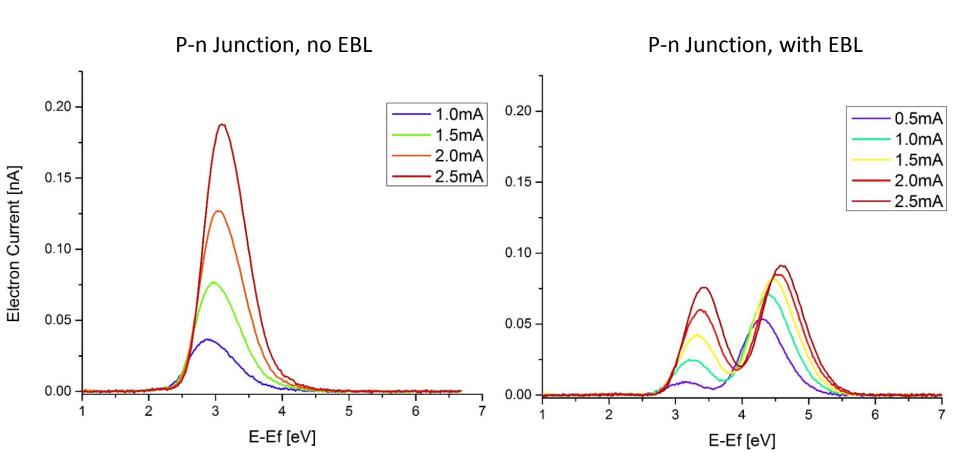
Low Energy Cylindrical Analyzer •Constant energy -> analyzer potentials fixed •50 meV resolution p-contact • $\Phi_{GaN/Cs}$ stable over several days GaN hν LED **Device Design** 1st Generation 2nd Generation 3rd Generation n-contact n-contact n-contact spectrometer n-contact Faraday $V_{\scriptscriptstyle Bias}$ cup V_{Cath} Vary V_{Cath} to sweep energy ~20% Open area ~43% Open area Note: V_{Bias} relative to V_{cath} V_{Bias} biased relative to ground


U.S. DEPARTMENT OF

Milestone 1.5: >10% quantum yield in photoemission spectroscopy from


Renewable Energy

Subtask 3.1: EES on Commercial Grade Blue: Dominant Droop Mechanisms


ENERGY EI

Milestone 2.1: Quantification of electron diffusion length in p-GaN

Milestone 2.2: Quantification of the efficacy of the AlGaN EBL via EE spectroscopy

Market Impact:

Fundamental understanding of efficiency loss mechanisms enables the engineering solutions which mitigate these physical processes.

Including:

- 1. Field screening of quantum wells.
- 2. Semipolar GaN LED substrates.

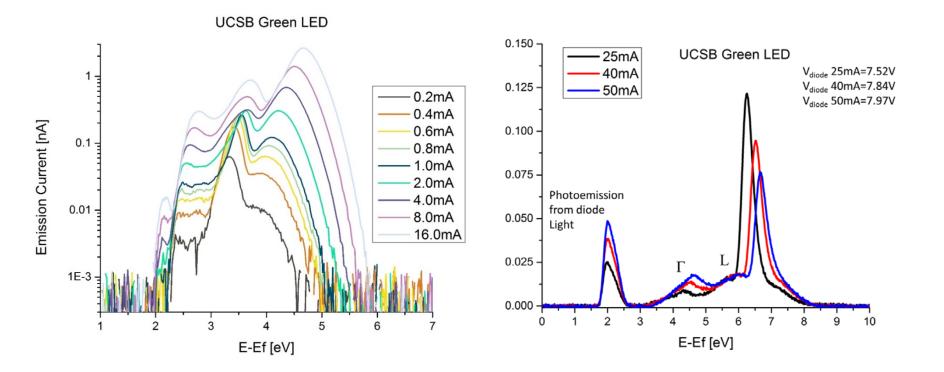
These solutions allow for increase in quantum well thickness allowing for lower carrier concentration in LED active regions.

Project Integration:

Industry partnerships have supplied sample material for the study of stateof-the-art devices. This provides a pathway to understanding efficiency problems which persist in commercially available solid state lighting.

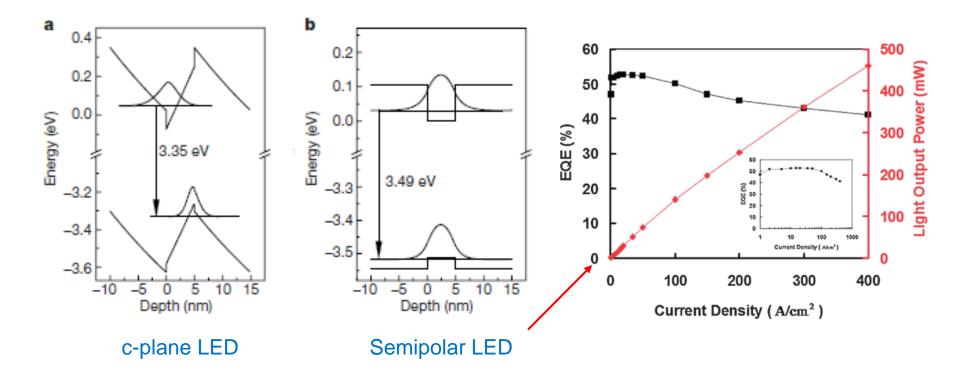
Partners, Subcontractors, and Collaborators:

Cree

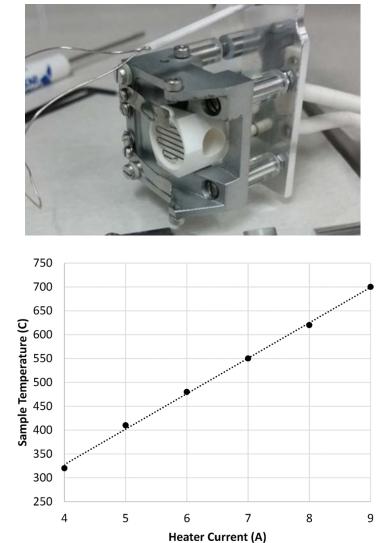

Communications:

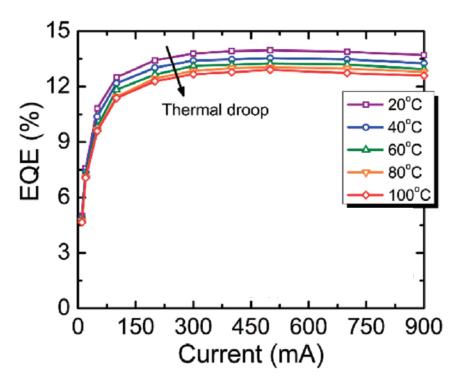
DoE SSL workshops

Next Steps and Future Plans


Milestone 3.2: Determination of dominant droop mechanism in green LEDs

Next Steps and Future Plans


Milestone 5.2: Identification of residual current droop mechanism in semipolar (2021) blue LEDs



Next Steps and Future Plans

Milestone 3.3 & 5.4: EES to determine thermal droop mechanisms

REFERENCE SLIDES

Spending to Date: 79%

Budget History										
July 31, 2016 – FY 2016 (past)		FY 2017 (current)		FY 2018 (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$500,000	\$125,000	\$500,000	\$125,000							

Project Plan and Schedule

Project Schedule								
Project Start: July 31, 2015		Completed Work						
Projected End: July 31, 2017		Active Task (in progress work)						
		 Milestone/Deliverable (Planned) 						
		Milestone/Deliverable (Actual)						
		FY2016			FY2017			
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work								
Q1 Milestone 1.1: Annealable ohmic contacts to p-GaN								
Q2 Milestone 1.2: Reduction in metal photoemission via dielectric coating of p-contact								
Q3 Milestone 1.3: 1% quantum yield in photoemission spectroscopy								
Q4 Milestone 1.4: Determination of quantum yields of Γ and L valley hot electrons								
Q4 Milestone 2.1: Quantification of electron diffusion length in p-GaN								
Q4 Milestone 2.2: Quantification of the efficacy of the AlGaN EBL via EE spectroscopy								
Q4 Milestone 3.1: Determination of dominant droop mechanism in blue LEDs								
Q1 Milestone 1.5: 10% quantum yield in photoemission spectroscopy								
Q2 Milestone 1.6: Determination of inter-valley transfer efficiencies								
Current/Future Work								
Q2 Milestone 3.2: Determination of dominant droop mechanism in green LEDs								
Q3 Milestone 1.7: 25% quantum yield in photoemission spectroscopy								
Q3 Milestone 5.2: Identify droop mechanisms in semipolar (20-2-1) blue LEDs								
Q4 Milestone 5.4: Identify thermal droop mechanisms in semipolar (20-2-1) blue LEDs								
Q4 Milestone 3.3: Determination of dominant thermal droop mechanism in blue LEDs								