Non-Vapor Compression – Solid State 2017 Building Technologies Office Peer Review

Ahmad Abu-Heiba, abuheibaag@ornl.gov **Oak Ridge National Laboratory**

Project Summary

Timeline:

Start date: 10/1/2015

Planned end date: 9/16/2017

Key Milestones

- 1. Improve MCM manufacturability; 9/30/2016
- 2. Fabricate 2nd generation unit; 8/1/2017

Budget:

Total Project \$ to Date:

- DOE: \$629,000
- Cost Share: \$107,000

Total Project \$:

- DOE: \$1,360,000
- Cost Share: \$340,000

Key Partners:

Vacuumscmelze GmbH & Co. KG

Project Outcome:

Develop fully solid state magnetic air conditioner (AC) Develop commercialization plan

Problem Statement: This project supports BTO MYPP HVAC/WH/Appliances Technology Challenges, "Unrealized design potential." The project demonstrates the feasibility of magnetic cooling with reduced complexity and cost relative to conventional magnetic cooling systems.

Target Market:

Currently, room/window AC is the target market sector. It accounts for 161.3 TBTU of primary energy.

Audience:

HVAC&R/Appliances industry manufacturers, MCM manufacturers, energy efficiency organizations.

Impact of Project: Step change in magnetic heat pumping technology

- Develop new MCM manufacturing methods
- Reduce complexity and cost of magnetic cooling systems

Near-term: Demonstrate feasibility of the technology and develop commercialization plan to identify market barriers and entry points.

Intermediate: Promote the technology into larger capacities and different applications.

Long-term: Adoption of technology on a commercial scale.

Approach

Approach:

- Improve MCM forming and machining techniques and post-treatment methods to produce parts in required shapes and surface roughness.
- System-level design and integration. In parallel, build a system with liquid metal to characterize performance.
- Market assessment to identify opportunities and barriers.

Key Issues:

- Manufacturability and post-treatment of MCM
- Mechanical design requirements

Distinctive Characteristics:

- Increases the heat transfer rate and allows higher operating frequency which results in higher capacity for the same MCM mass (higher volumetric capacity).
- Reduce complexity by eliminating pumping and flow reversal components.

Innovation

 Replacing fluid with solid increases heat transfer rate, capacity and COP.

Theoretically
$$\frac{UA_{rod}}{UA_{fluid}} \approx \frac{k_{rod}}{4 \times k_{fluid}} \approx O(100)$$

Challenge

- Because of sliding metal between MCM blocks:
 - Surface roughness must be low (challenging for MCM manufacturing)
 - Air gap is unavoidable (increases thermal resistance)
- Motion profile (long dwells and sharp acceleration)
- MCM that are suitable for heating and cooling in typical heat pump operation range (20° to 40°C)

Prototype 1

- Reciprocating regenerator tubes and C-shaped magnets
- Cam drives and syringe pumps
- Challenging but PROMISING

0 10 20 30 40 50 60 70 80 90 100 % cam revolution

U.S. DEPARTMENT OF

Ε

ERG

Displacement Scale

Regenerator

- The target was to fill the tube with a bonded powder bed of irregular particles of MCM
- 10 different MCMs, each stage is 1.2" long
- The internal surface was coated for thermal insulation
- Epoxy was cured at 100

- Hallbach array magnet with stationary regenerator tube
- Servo motor to control motion
- External pump

MCM Progress: bottom-up manufacturing – Wire cutting

- Produced 10x5x150 mm rods by wire-cutting. Ground, then heat treated (> 1000°C) . Maximum roughness of $< 6 \mu m$.
- Reaction between MCM (La-Fe-Si) and Molybdenum reduced MCE.
- Iron lead to significant bowing of the rods.
- For good mechanical and magnetic properties, Mo+Fe supports will be used.

Molybdenum plate

Iron plate

MCM Progress: Bottom-up Manufacturing – Tape casting

- Preliminary tests have been conducted aiming for La-Fe-Si thin films.
- Work has focused on the formulation of slurries for tape casting.
- First tapes have been hand-casted.

MCM Progress: Bottom-up Manufacturing – Tape casting

- Tape 0.17 mm thick on average
- Fully dense material achieved after sintering.
- Hydrogenation lead to volume change and cracks.
- Currently investigating slurry formulation.
- Glovebox with connected de-binding furnace was purchased for oxygenfree treatment.

MCM Progress: Top-down Manufacturing

- Blocks of La-Fe-Si were pressed and sintered.
- Parts of La-Fe-Si were cut using wire electric discharge (EDM) machining.
- Geometry can be used to test central hypothesis of this project; Solid state heat transfer between La-Fe-Si and metal part.

Disadvantages:

- EDM machining is slow and the yield is low
- Surface roughness of machines available to
 VAC typically between 20 70 μm

Progress and Accomplishments

Accomplishments:

- Forming of MCM rods with less than 6 μm surface roughness.
- Initial results of MCM tape casting show great potential.
- Analytical model have been developed.

Market Impact:

- Up to 20% higher COP than vapor compression counterparts
- Identified steps toward successful market entry. The report will be published as a milestone report at the end of the project.

Lessons Learned:

- Special attention must be paid to driving system due to large forces.
- Reduction of dead volume is critical.

Project Integration and Collaboration

Partners, Subcontractors, and Collaborators:

- Vacuumscmelze Inc. is a large MCM manufacturer. They supply MCM and develop forming and post-treatment techniques.
- PNNL: Cost modeling of AMR and MCM properties characterization.

Communications:

Zhang, Mingkan; Mehdizadeh Momen, Ayyoub; and Abdelaziz, Omar, "Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration" (2016). International Refrigeration and Air Conditioning Conference. Paper 1758.

Inventions:

Ayyoub M. Momen, O. Abdelaziz, and E. Vineyard, "Magnetocaloric Refrigeration Using Solid Working Medium," US Provisional Patent Application, ID 3263.1, Oct 30, 2014.

Next Steps and Future Plans:

- Validate model experimentally.
- Complete cost model and calculate payback.
- Finalize tape casting manufacturing procedure.
- Build fully solid state 500 W heat pump.

REFERENCE SLIDES

Project Budget: \$1.74M (\$1.4M DOE, \$340K Cost Share)
Variances: None
Cost to Date: \$689K DOE, \$290K Cost Share
Additional Funding: None

Budget History											
10/1/2015– FY 2016 (past)		FY 2 (current +	2017 - planned)	FY 2018 (planned)							
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share						
\$583,000	\$170,000	\$817,000	\$170,000	0	0						

Project Plan and Schedule

Project Schedule									
Project Start: 10/1/2016		Completed Work							
Projected End: 9/30/2017		Active Task (in progress work)							
		Milestone/Deliverable (Originally Planned) use for							
		Milestone/Deliverable (Actual) use when met on time							
		FY2016			FY2017				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	
Past Work									
Q1 Milestone: Review state-of-art		•							
Q2 Milestone: Develop AMR 1st order model			•						
Q3 Milestone: Proof of concept AMR unit									
Q4 Milestone: Demonstrate proof of concept									
Q4 Milestone: Post treatment process of MCM									
Q5 Milestone: Optimize hydrogenation of MCM									
Q6 Milestone: Build 2nd generation unit									
Q7 Milestone: Evaluate 2nd generation unit									
Q8 Milestone: Complete cost analysis									