
Modelica – Spawn of EnergyPlus

2017 Building Technologies Office Peer Review

Design

Model

Simulate

Operate

Michael Wetter, mwetter@lbl.gov Lawrence Berkeley National Laboratory

Project Summary

Timeline:

Start date: Oct. 2015

Planned end date: Sep. 2019

Key Milestones:

- 1. Release Modelica Buildings library 4.0; 3/31
- Prototyped OpenStudio to Modelica HVAC simulation; 8/30/17

Budget:

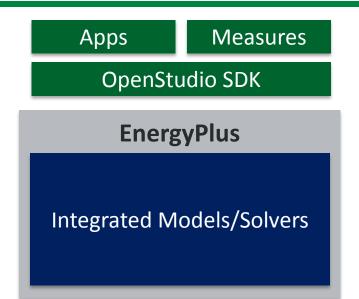
Total Project \$ to Date:

- DOE: \$885k (since Oct. 2015)
 \$200k (since Oct. 2016)
- Cost Share: no direct, but leverage of >100M investment in Modelica/FMI, IEA EBC Annex 60 (42 institutes) and IBPSA Project 1 (19 institutes)

Total Project \$:

DOE: \$2.8M (Oct. 15 to Sep. 19, includes
 2 non-SOEP tasks)

Key Partners:

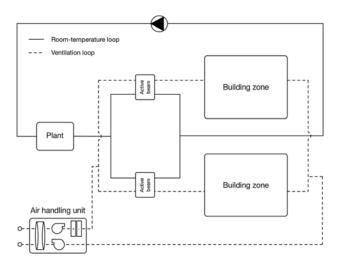

NREL	Plus 41 institutes
ORNL	through IEA EBC
Objexx	Annex 60 that jointly develop Modelica &
Big Ladder Software	FMI for buildings
Modelon	

Project Outcome:

Next-generation EnergyPlus that:

- Places EnergyPlus on stable IT platform based on open standards (Modelica and Functional Mockup Interface) and that leverages >\$100M in investments.
- Reduces EnergyPlus maintenance effort
- Connects energy simulation with control design, optimization, and implementation
- Closes simulation technology model gap by supporting vendor-defined models

Problem Statement

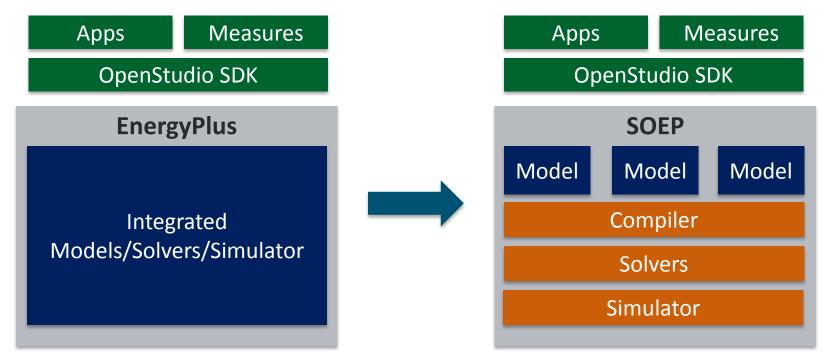


Current-generation BEM engines (like EnergyPlus) are "monolithic"

 Model's "governing" equations are implicit in model-specific solvers

Resulting limitations

- Large, difficult to maintain code bases
- Inability to
 - integrate with external models or analyses
 - extract and reuse models for other use cases (e.g., control implementation)
 - model certain systems with non-conventional flow or control networks
- Poor scalability for large analyses (e.g., district systems)



Novel two-pipe system, reducing energy by 12-18% compared to conventional four-pipe system, to be built based on Modelica virtual prototyping. <u>http://dx.doi.org/10.1016/j.enbuild.2016.</u> <u>10.051</u>

Energy Efficiency &

Renewable Energy

Approach

OpenStudio layer hides changes from 3rd-party developers and users

Separation of concerns – equation-based modeling language (Modelica)

- Building experts develop domain-specific models
- Numerical/software experts develop domain-neutral compiler/solver/simulator/optimizer

Modularity and inter-operability – use open standard simulation interface (FMI)

Modular plug-and-play components

Energy Efficiency & Renewable Energy

Expected Outcomes

Scalable, future-proof infrastructure

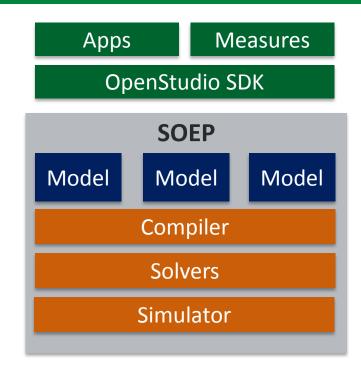
- Supported by >\$100M in investment
- Benefits from advances in other engineering domains

Reduced maintenance effort

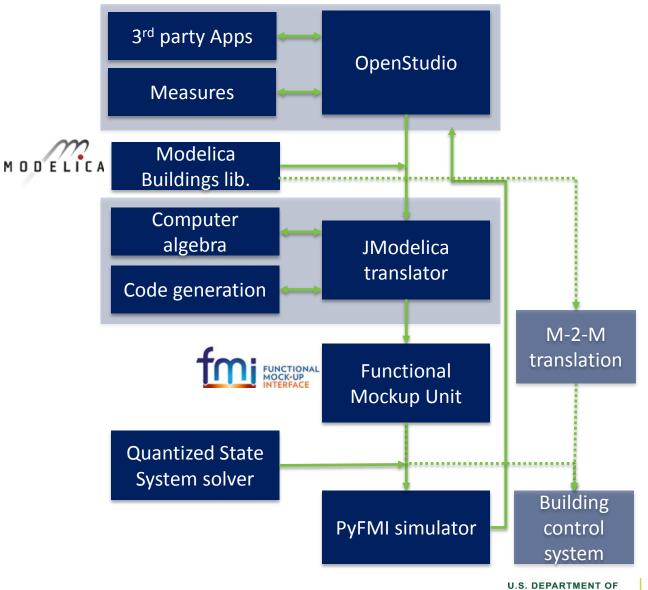
- EnergyPlus team responsible only for models
- Incorporates 3rd-party models
- Leverages open international model libraries

Reduced technology lag

- Manufacturers can share proprietary models
- Users can analyze non-conventional energy systems by quickly adding new models
- Manufacturers can prototype and test with hardware and software "in the loop"


Reusable control models that can plug into control workflows

• Integrates EnergyPlus with control design, optimization, verification, and implementation


Better scalability and integration with other analyses

Expanded market and audience

- Architects/MEs, utilities, ESCOs + equipment/control manufacturers, building operators
- Potential to save 0.7 quad/year by 2030

Progress and Accomplishments – Architecture

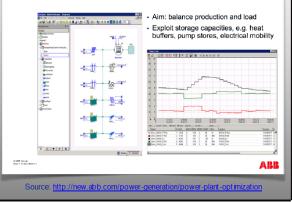
Energy Efficiency & Renewable Energy

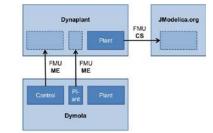
ENERGY

Foundational Standards – Modelica and FMI

https://modelica.org/

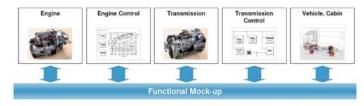
- Open, industry-driven standard for multi-physics modeling
- Developed since 1996
- Large ecosystem of free and commercial libraries and tools
- IEA EBC Annex 60: 42 institutes working on Modelica for building and district energy systems


https://www.fmi-standard.org/


- API standard to exchange simulators or models
- Developed since 2008
- Supported by >90 tools.

Why standards?

- Leverages investments in related industries.
- Provides well-tested APIs for software integration.
- Provides to industry a stable basis for investment.
- Avoids vendor lock-in.

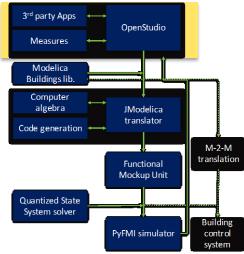

Reference Intraday optimization of municipal power

Powerplant simulation with Modelica (Dymola) coupled to in-house simulator (Dynaplant).

Source: Siemens, <u>doi:10.3384/ecp1511817</u>

Cosimulation of the behavioral models and the embedded controller software

7


P and A – OpenStudio

OpenStudio SDK

- <u>http://openstudio.net/</u>
- Abstractions enhance BEM app development productivity

Past year

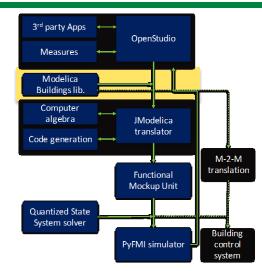
- Designed software stack to parse the Modelica Buildings Library, enabling new OpenStudio APIs and integrated documentation.
- Prototyped OpenStudio application program interfaces (APIs) for Modelica backend.
- Prototyped translator for subset of existing OpenStudio models to Modelica.
- Prototyped packaging techniques for SOEP distribution.

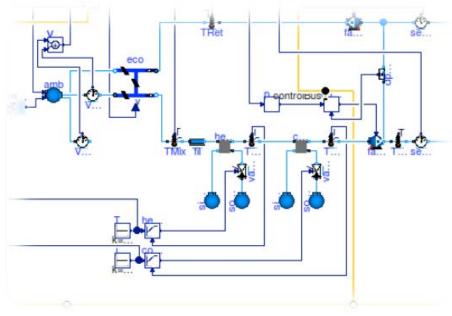
fan = OpenStudio::SOEP::Component.new("Fan");
fan.setAttribute("FanEfficiency", 0.75); OpenStudio::SOEP::connect(fan.port("AirOutlet"),
coil.port("AirInlet"));

Code snippet of OpenStudio script that instantiates Modelica.

Energy Efficiency & Renewable Energy

P and A – Modelica Buildings component library

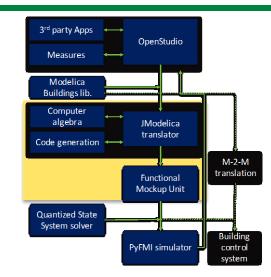

Modelica Buildings Component Library

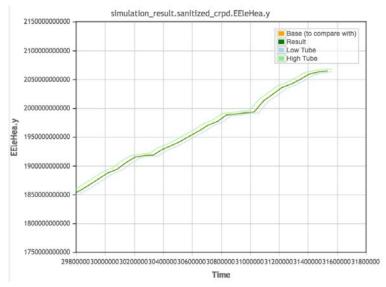

- <u>http://simulationresearch.lbl.gov/modelica/</u>
- 500+ open-source component models
- Used for US-China project, DOE/BENEFIT projects, by major control vendors and equipment manufacturers
- Validated with BESTEST, EnergyPlus, TRNSYS, measured data

Past year accomplishments

- Reduced computing time up to 40% for large models
- Automated continuous integration & verification of results
- Added new models
 - Reduced order buildings [RWTH Aachen & KU Leuven]
 - Active beams [Aalborg University]
 - Heat pumps [Polytechnique Montreal]
 - Electrochromic windows [CEC funded]
 - District heating & cooling systems [LBNL LDRD]

Graphical rendering of HVAC secondary system in Modelica.


P and A – JModelica


JModelica

- <u>http://www.modelon.com/products/jmodelicaorg/</u>
- Open-source Modelica environment

Past year

- Continuous integration & verification
 - 600 test cases
 - producing same results (10⁻³ tolerance) with Dymola (commercial)
 - verifies 3 million result points
- Improved code coverage and compliance with Modelica standard
- Improved solver for hybrid systems and stiff ordinary differential equations
- Designed API for QSS solvers

Verification test of JModelica-computed energy use versus Dymola-generated reference.

P and A – Quantized State System (QSS) solver

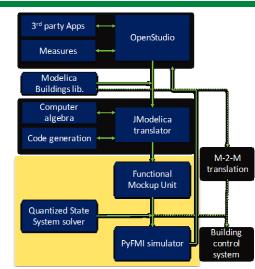
Quantized State System (QSS)

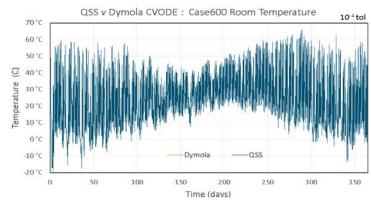
- Asynchronous integration based on component dynamics
- Needed for model scalability, in particular for models with feedback control

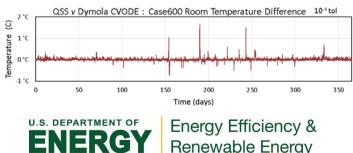
Past year

- Implemented a family of QSS solvers:
 - Explicit: QSS1, QSS2, QSS3
 - Implicit: LIQSS1, LIQSS2

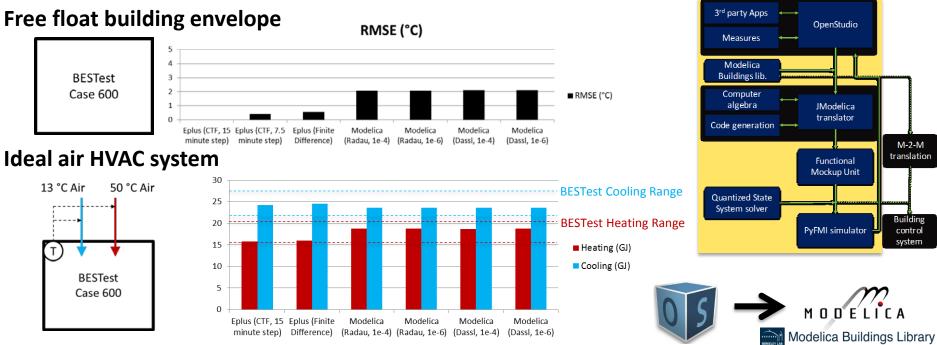
Preliminary test with BESTEST model

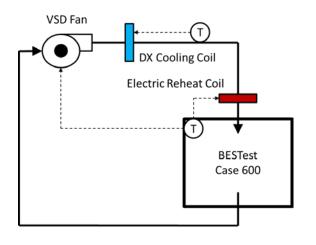

• Case600FF:

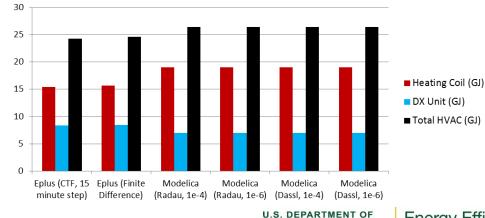

Modelica \rightarrow Dymola \rightarrow FMU \rightarrow QSS1 Modelica \rightarrow Dymola \rightarrow FMU \rightarrow CVODE


• Results match well

Work in progress


- FMI API implementation for QSS
- Hybrid systems (mixed continuous/discrete dynamics)
- Algebraic equations
- Units support
- Performance/parallelization





P and A – End-to-End Tool Chain Verification

Single Zone VAV System with full recirculation

Project Integration and Collaboration

SOEP integrates directly with OpenStudio ecosystem, and also with BENEFIT projects OpenBuildingControl and Data Center Toolkit.

• Bi-weekly meetings.

IBPSA (International Building Performance Simulation Association) Project 1 2017-22

- <u>https://ibpsa.github.io/project1</u>
- BIM/GIS and Modelica Framework for building and community energy system design and operation
- Continues successful IEA EBC Annex 60 (42 institutes from 18 countries).
- 19 institutes so far, with > 60 FTE, 2017-22.

Training workshops

- LBNL 2016 (2 days),
- Corsica 2016 (5 days IBPSA France sponsored),
- Modelica conference 2017 (Modelon sponsored)
- Building Simulation 2017 (NAMUG sponsored)

Energy Efficiency & Renewable Energy

Next Steps and Future Plans

By end of FY 17

• End-to-end MVP (Minimum Viable Product)

FY18-19:

- Scope roughly equivalent to EnergyPlus
- Performance meeting or exceeding EnergyPlus
- Availability as option to all OpenStudio applications

FY20-22:

- DOE ramps down EnergyPlus development, shifting resources to SOEP
- Large segment of developers and users using SOEP rather than EnergyPlus
- Active development and use of SOEP-based operational applications

Note: Technology could be applied to grid modernization and other DOE activities

- ABB optimizes in real-time 7% of all power produced in Germany using OpenModelica
- Modelon uses Modelica for waste heat optimization for power plants with district heating

REFERENCE SLIDES

Energy Efficiency & Renewable Energy **Project Budget**: 700k annual funding for SOEP, Modelica, and FMI, including support of legacy tools.

Variances: None.

Cost to Date: \$210k spent by end of January

Additional Funding: Cost share shown as 0, although we leverage significant resources through

- Modelica and FMI (>\$100M private and public investment),
- IEA EBC Annex 60 (42 partners)
- IBPSA Project 1 (18 partners), and
- working with Modelon which has private investments in their tools such as from ANSYS and Ricardo.

Budget History									
	2016 ast)	FY 2017 (current)			– FY 2019 nned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
675k	0*	700k	0*	1400k	0*				

Project Plan and Schedule

FY 17 focuses on setting up the tool chain for a minimum viable product. FY 18-19 focuses on expanding model library, functionality and addressing performance bottlenecks.

Project Schedule													
Project Start: Oct. 1, 2015		Completed Work											
Projected End: Sep 30, 2019		Active Task (in progress work)											
		Milestone/Deliverable (Originally Planned) use for missed											
	Milestone/Deliverable (Actual)						ual) <mark>u</mark>	se wh	when met on time				
		FY2016			FY2017				FY2018-19				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)					
Past Work													
Release Modelica Buildings library for use in E+													
Release early access of master algorithm through BCVTB													
Current/Future Work			_							_	_		
Release Modelica Buildings library for use in E+ Prototyped OpenStudio to Modelica HVAC simulation													
Expand coverage of models													
Analysis and improve performance													