# **Energy Factors in Commercial Building Finance**

2017 Building Technologies Office Peer Review



# **Project Summary**

## **Timeline**:

Start date: October 2015

Planned end date: September 2018

### **Key Milestones**

1. Pilot incorporation of energy factors into underwriting with at least two lenders; 8/31/17

2. Two case studies on Property Condition
Assessment energy efficiency module; 6/30/17

## **Budget**:

## **Total Project \$ to Date:**

• DOE: \$800,000

Cost Share: \$0

## **Total Project \$:**

DOE: Year 3 TBD

Cost Share: \$0

## **Key Partners**:

| UC Berkeley Haas School of Business | Institute for Market<br>Transformation |
|-------------------------------------|----------------------------------------|
| Silicon Valley Bank                 | Colorado Lending Source                |
| Ascentium Capital                   | Unico                                  |

#### **Project Outcome:**

The goal of this project is to ensure that commercial mortgages fully account for energy factors in underwriting and valuation and thereby serve as a scalable channel for energy efficiency investments.

The project seeks to:

- Develop interventions to properly value and incorporate energy factors in the commercial mortgage underwriting process;
- Pilot interventions with lenders and related stakeholders;
- Disseminate best practices within the commercial mortgage community.

This project directly addresses CBI strategy #3 in the BTO MYPP.



## Purpose and Objectives...1

#### **Problem Statement:**

- Commercial mortgages currently do not fully account for energy factors in underwriting and valuation. As a result, energy efficiency is not properly valued and energy risks are not properly assessed and mitigated.
- Commercial mortgages are a large lever and could be a significant channel for scaling energy efficiency.
- The project seeks to
  - Develop interventions to properly value and incorporate energy factors in the commercial mortgage underwriting process;
  - Pilot interventions with lenders and related stakeholders;
  - **Disseminate best practices** within the commercial mortgage community.

This project directly addresses MYPP CBI strategy #3: Accelerate adoption of energy saving solutions by developing the market infrastructure to enable markets to deliver greater investment in energy efficiency.

U.S. DEPARTMENT OF \_ | Energy Efficiency &

Renewable Energy

# Purpose and Objectives...2

## **Target Market:**

- Commercial real estate that is mortgage financed.
- Total size of mortgage market: \$2.5 Trillion.
- Total energy usage of five key sectors: 4,812 TBtu site energy (CBECS 2012, RECS 2009)

#### Audience:

- Lenders: Incorporate energy factors in underwriting.
- Borrowers: Create demand for mortgages that consider energy factors.
- Service providers: Include energy factors in Appraisals, Property Condition Assessments.







# **Purpose and Objectives...3**

## **Impact of Project:**

Energy factors are <u>fully and routinely</u> incorporated in commercial mortgage valuation, accelerating demand for buildings with lower energy risk.



## Fully aligned with **CBI logic model:**

Objective: Accelerate market adoption

Short-term outcome: Market has tools and data to understand, manage and value EE Mid-term outcome: Array of stakeholders incorporate EE into financial transactions



# The link between energy factors and valuation

Energy directly affects Net Operating Income (NOI) used in valuation.

### **Energy Use Volume**

Electricity kWh/kW, fuel therms, etc.

Driven by bldg. features, operations, climate

## **Energy Use Volatility**

+/- change over mortgage term

Driven by bldg operations, weather variation

## **Energy Price**

\$/kWh, \$/kW, \$/therm Set by rate structure

## **Energy Price Volatility**

+/- change over mortgage term

Driven by rate structure, forward price curves

Current practice does not fully account for these factors in calculation of Net Operating Income (NOI)

- Usually based on historical average cost data, if available
- Does not account for energy use and price volatility during mortgage term

Key question: How much do these factors "move the needle" for NOI and default risk?



# Approach: Impact of energy on default rate

Mortgage Default Rate = f (EUI, EnergyPriceGap, CouponSpread, LTV, Region)



## **Result: Default risk and source EUI**

|                                      | Coefficient Estimate  | Standard Error |
|--------------------------------------|-----------------------|----------------|
| Intercept                            | -0.40444**            | 0.18466        |
| Log Source EUI                       | 0.07335**             | 0.03129        |
| Origination Loan-to-<br>Value Ratio  | 0.00258***            | 0.00096        |
| Coupon Spread to 10<br>Year Treasury | 0.02188               | 0.01565        |
| Electricity Price Gap                | 0.00003***            | 0.00001        |
| Time to Maturity on Balloon          | -0.00189***           | 0.00060        |
| Origination Year Fixed Effects       | Yes                   |                |
|                                      | N = 473<br>R2 = .1052 |                |

<sup>\*</sup> p<0.1; \*\* p<0.05; \*\*\*p<0.01

The coefficient estimates for **BOTH** the *Electricity Price Gap* and *Source EUI* are significant at better than the .05 level of statistical significance.



# Approach: Impacts of energy use volatility

- Develop range of scenarios with different energy factor risks
  - Different building types and asset efficiency levels
  - Range of building types, locations, asset efficiency, operations

## For each scenario:

- Determine energy consumption and price volatility.
  - Use combination of empirical and simulation approaches
- Use empirical model coefficients to determine default risk for each scenario



# Scenario analysis: Range of practice for operational factors

| Factor                          | Good practice                                                              | Average practice                                                                 | Poor practice                                    |  |  |  |
|---------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|
|                                 | Daylight-dimming + occ                                                     | Occ only                                                                         | Timer only                                       |  |  |  |
| Lighting controls               |                                                                            |                                                                                  |                                                  |  |  |  |
| Plug load controls              | Turn off when occupants leave                                              | Sleep mode by itself                                                             | No energy saving measures                        |  |  |  |
| HVAC schedule                   | optimal start                                                              | 2hr +/- Occupanct sch                                                            | n/a                                              |  |  |  |
| Thermostat settings             | 68°F for heating and 78°F for cooling Setback: 60 - 85                     | 70°Ffor heating and 76°F for cooling Setback: 68 - 80                            | 72°F for heating and 74°F for cooling No setback |  |  |  |
| Supply air temp reset           | SAT reset base on warmest zones                                            | SAT reset based on the stepwise function of outdoor air temperature              | Constant supply air temperature                  |  |  |  |
| VAV box min flow settings       | 15% of design flow rate.                                                   | 30% of design flow rate.                                                         | 50% of design flow rate.                         |  |  |  |
| Economizer controls             | Enthalpy                                                                   | dry bulb                                                                         | none/broken                                      |  |  |  |
| Chilled water supply temp reset | Reset chilled water temperature based on cooling demand.                   | Linear relationship with outside air temp (OAT).                                 | No reset with constant year-round.               |  |  |  |
| Chiller sequencing              | Kick on the lag chiller when the lead chiller reaches its peak efficiency. | Kick on the lag chiller when the chilled water temperature cannot be maintained. | Always running two chillers                      |  |  |  |
| Hot water supply temp reset     | Reset the hot water supply temperature according to heating load.          | Linear relationship with OAT.                                                    | No reset with constant year-round.               |  |  |  |
| Boiler sequencing               | Kick on the lag boiler when lead boiler reaches its peak efficiency.       | Kick on the second boiler based on OAT.                                          | No sequencing and always running two boilers.    |  |  |  |
| Plug load intensity             | 0.4 W/sf                                                                   | 0.75 W/sf                                                                        | 2.0W/sf                                          |  |  |  |
| Occupant density                | 400 sf/per                                                                 | 200 sf/per                                                                       | 130 sf/per                                       |  |  |  |
| Occupant schedule               | 8 hour WD                                                                  | 12 Hr WD                                                                         | 16 Hr WD                                         |  |  |  |



# **Energy use variation due to operation factors**





# Energy use variation and default risk – scenario analysis

| Case                      | Source EUI<br>(kBtu/sf.yr) | Change in default risk (absolute) | % Change in default risk (relative to TREPP avg) |
|---------------------------|----------------------------|-----------------------------------|--------------------------------------------------|
| Baseline                  | 200                        | -                                 | -                                                |
| Poor operational practice | 260<br>(+30%)              | +0.0084                           | + 10.5%                                          |
| Good operational practice | 180<br>(-10%)              | -0.0034                           | - 4.25%                                          |

See BB webinar for more detailed results:

https://betterbuildingssolutioncenter.energy.gov/webinars/commercial-mortgages-energy-factors-and-default-risk



# **Approach: Pilot interventions**

# Mortgage Underwriting

**Objective:** Demonstrate how default risk and valuation change with inclusion of energy use and price volatility for specific mortgage loans.

- Develop method for evaluating and incorporating energy use and price volatility.
- 2. <u>Base case:</u> Estimate default risk and valuation based on current practice, using average historical energy cost data.
- 3. <u>Test case:</u> Estimate default risk and valuation incorporating energy use and price volatility.
- 4. Publish pilot case study and recommendations

# **Property Condition Assessments (PCA)**

**Objective:** Assess how energy audit information can be used to inform the property acquisition and financing process.

- Develop use cases and proposed EE audit scope for PCA
- 2. <u>Test case:</u> Analyze how audit information was used in property acquisition and financing process and impacts on price, reserve requirements, loan amount, terms. Compare to base case of no audit info.
- 3. Revise use cases and audit scope
- Publish case study and recommendations.



# **Key Issues & Distinctive characteristics**

## **Key Issues:**

- Mortgage process has high stakes and many touch points. Energyrelated interventions must be minimally disruptive.
- Cannot expect lenders to develop energy expertise need simple metrics, process and risk management strategies.

## **Distinctive Characteristics:**

- Engagement with lenders on issues they care about i.e. valuation and default risk.
- Establishing <u>empirical</u> link between energy and default risk.
- Pilots/case studies with actual loans



# **Progress and Accomplishments**

## **Accomplishments**:

Show that energy matters for mortgage valuation

- ✓ Demonstrated statistically significant empirical link between energy factors and default risk. (slide 8)
  - ✓ First time for commercial bldgs
- ✓ Demonstrated impact of energy use volatility on default risk. (slide 12)

# Develop and Pilot Interventions

- ✓ Developed methodology for pilots
- ✓ 2 lenders signed up for underwriting pilot and have provided data
  - ✓ 2 Office buildings
  - √ 1 hotel
  - √ 1 multi-family
- ✓ 2 organizations committed to PCA pilot

## Market Impact:

- Project is still in the pilot phase no direct measurable market impacts yet.
- Over 40 stakeholders engaged in dialogue about mortgage energy risk management (most for the first time) including over 10 lenders.

#### **Lessons Learned:**

To engage lenders effectively, don't sell efficiency - sell risk management.



## **Project Integration and Collaboration**

## **Project Integration:**

- Actively working with lenders and owners on actual loans.
- Continued outreach to additional lenders and owners.
- Dissemination to targeted audiences (see below)

## Partners, Subcontractors, and Collaborators:











Additional lenders pending confirmation

#### Communications:

- ACEEE paper
- BBA Webinar
- MSCI Real Estate Investment Seminar
- Mortgage Bankers association (planned)
- ACEEE finance forum (planned)
- Better Buildings Summit (planned)
- Scotsman Guide for Mortgage Originators (planned)



# **Next Steps and Future Plans**



- Need to continue to strengthen the empirical link between energy factors and mortgage valuation.
  - Lenders care about actuarial data
  - Larger datasets
  - More fine-grained analysis by location and building type
- Complete underwriting pilots
- Complete PCA pilots
- Develop case studies for dissemination
- Technical Report
- Develop strategy for broader deployment of best practices and industry standards (longer term)

  U.S. DEPARTMENT OF Energy Efficiency &

Renewable Energy

# REFERENCE SLIDES



# **Project Budget**

Variances: None.

Cost to Date: ~40K (Oct 2016-Jan 2017)

~10% of total budget (note: spend rate was low in Q1 as we were waiting for data

from partners, which is now in place. Spend rate will increase starting Feb.)

Additional Funding: None.

| Budget History |            |      |                           |     |            |
|----------------|------------|------|---------------------------|-----|------------|
|                |            |      | FY 2017 FY 2018 (planned) |     |            |
| DOE            | Cost-share | DOE  | Cost-share                | DOE | Cost-share |
| 400K           | 0          | 400K | OK                        | TBD |            |



# **Project Plan and Schedule**

| Project Schedule                                |              |                                            |              |              |              |              |              |              |
|-------------------------------------------------|--------------|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Project Start: Oct 2015                         |              | Completed Work                             |              |              |              |              |              |              |
| Projected End: Sep 2018                         |              | Active Task (in progress work)             |              |              |              |              |              |              |
|                                                 | •            | Milestone/Deliverable (Originally Planned) |              |              |              |              | ined)        |              |
|                                                 |              | Milestone/Deliverable (Actual)             |              |              |              |              |              |              |
|                                                 |              | FY2016 FY2017                              |              |              |              |              |              |              |
| Task                                            | Q1 (Oct-Dec) | Q2 (Jan-Mar)                               | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Past Work                                       |              |                                            |              |              |              |              |              |              |
| Literature review                               |              |                                            |              |              |              |              |              |              |
| Scoping Report                                  |              |                                            |              |              |              |              |              |              |
| Demonstrate impact of energy factors to lenders |              |                                            |              |              |              |              |              |              |
| Develop darft scope for EE module for PCAs      |              |                                            |              |              |              |              |              |              |
| Current Work                                    |              |                                            |              |              |              |              |              |              |
| Identify pilots                                 |              |                                            |              |              |              |              |              |              |
| Document underwriting pilot case studies        |              |                                            |              |              |              |              |              |              |
| Document PCA pilot case studies                 |              |                                            |              |              |              |              |              |              |