### Materials and Designs for High-Efficacy LED Light Engines

2017 Building Technologies Office Peer Review



NBD: Narrow-Band Downconverter



Paul Fini, pfini@cree.com Cree, Inc.

### **Project Summary**

#### Timeline:

Start date: 7/1/15

Planned end date: 6/30/17

#### **Key Milestones:**

 Month 9: measure red-emitting narrow-band downconverter (NBD) thermal efficiency "droop" of < 10% from room temperature to 85°C.</li>

2. Month 15: confirm <10% LED luminous flux degradation and <0.004 du'v' color shift at >1,000 hrs. of accelerated testing (high-T, high current).

#### **Budget**:

#### **Total Project \$ to Date:**

• DOE: \$1.12M

Cost Share: \$281K

#### **Total Project \$:**

• DOE: \$1.5M

Cost Share: \$375K (20% of total)

#### **Project Outcome:**

New red emitting narrow-band down-converter (NBD) materials will enable white solid-state lighting with **10-20% or higher efficacy** compared to conventional phosphors.

Cree is overcoming challenges in NBD efficiency and reliability (robustness) in typical LED operating conditions to accelerate these materials toward real applications.



### **Purpose and Objectives**

**Problem Statement**: simultaneous achievement of red-emitting NBDs with high down-conversion efficiency, high spectral efficiency, and high robustness in application conditions

**Target Market and Audience**: LEDs integrated into nearly all solid-state lamps and luminaires, particularly warm white (2700-3500K CCT).



Renewable Energy

#### Impact of Project:

- 1. Output: stable and efficient red-emitting NBD materials as drop-in replacements for conventional red phosphors in white LEDs.
- 2. Primary contribution: increase warm-white LED efficacy in a timeframe that meets or exceeds DOE SSL roadmap goals
  - a. Near term: >160 lm/W\* in low- to medium-power LED packages
  - b. Intermediate term: >170 lm/W\* in low- to medium power LED packages
  - c. Long term: proliferation into high-power LED packages

\*At DOE SSL baseline LED drive current of 35 A/cm² (~1 W/mm²). LED efficacy at lower currents will be significantly higher (>180 lm/W).

U.S. DEPARTMENT OF Energy Efficiency &

### **Approach**

**Approach**: Synergistically combine advances in materials synthesis, light engine configuration & processing, and reliability (robustness).



**Key Issues**: primary challenge is achieving high red NBD **reliability** in accelerated testing conditions (high light flux, T, & RH) while maintaining high **down-conversion efficiency** (*i.e.* turning blue photons into red photons).

**Distinctive Characteristics**: a multi-thrust approach with continuous application-centric reliability testing is quickly transitioning NBDs toward commercialization.



### **Progress and Accomplishments – NBD Synthesis**

 NBD synthesis and post-synthesis treatment are being systematically varied and evaluated based on characterization and reliability testing





Renewable Energy

 Lessons learned: NBD composition, purity, morphology, and post-synthesis treatment are all factors in optimizing QY. Optimization of some of these parameters may not result in high NBD reliability!

#### **Progress and Accomplishments – Light Engine**

 White NBD-containing LEDs fabricated and tested under steady-state conditions at various temperatures.



| XHG2 - 3500K - 55°C - 65mA |      |         |                    |                    |  |  |  |  |  |  |
|----------------------------|------|---------|--------------------|--------------------|--|--|--|--|--|--|
|                            | LF   | LF gain | CRI R <sub>a</sub> | CRI R <sub>9</sub> |  |  |  |  |  |  |
| All Phosphor               | 23.8 | -       | 92.5               | 60                 |  |  |  |  |  |  |
| NBD                        | 26.2 | +10%    | 93.0               | 70                 |  |  |  |  |  |  |



Renewable Energy

• Lessons learned: NBD thermal droop must be factored into "real world" white LED performance. Further white LED luminous flux (LF) gains expected as red NBD QY and thermal droop improve

## **Progress and Accomplishments - Reliability**

- LED accelerated testing in high-current, high-T, high-RH ambients acts as synthesis feedback and helps define the application space.
- Progressively higher stress currents (and therefore blue flux) are being applied.



• Lesson learned: NBD-containing LEDs often exhibit luminous flux **rise** early in testing; color point change (namely du') is a better indicator of NBD stability and lifetime prediction.

U.S. DEPARTMENT OF Energy Efficiency &

Renewable Energy

### **Project Integration and Collaboration**

**Project Integration**: project R&D staff continually communicate with **Cree LED product development groups** to ensure timeliness and relevance of project goals and achievements.

Synthesis: how reproducible is NBD synthesis? How scalable? \$/lumen?

Light Engine: are NBDs compatible with existing LED fabrication processes and package configurations?

Reliability: how does evolving NBD reliability map onto projected lifetime (>50,000 hrs.) in various luminaire application conditions?

Partners, Subcontractors, and Collaborators: no external partners.

**Communications**: project results presented at annual DOE SSL R&D Workshops.



### **Next Steps and Future Plans**

#### **Next Steps and Future Plans:**

- By end of project: package-level evaluation and multiple-condition REL studies to help elucidate NBD failure mechanisms and ways to overcome them. Luminaire-level demonstration for comparison w/ all-phosphor.
- After project: continue intensive synthesis/package/REL cycle in the drive to create robust red-emitting NBDs
- Future: establish "technical" vs. "fundamental" NBD limitations, and compare to other nascent red down-converter materials systems. Apply "lessons learned" in synthesis and robustness improvements from current project to new materials systems, if applicable.



# REFERENCE SLIDES



### **Project Budget**

**Project Budget**: \$1.5M Federal Share / \$375K Cree Cost Share

**Variances**: currently at +\$98K (6.7% of combined of Federal + Cost Share budget) No modifications to project plan.

Cost to Date (as of 2/18/17): \$1.25M Federal / \$251K Cost Share (83.6% of total)

Additional Funding: none.

| Budget History                                     |            |           |                      |                             |            |  |  |  |  |  |
|----------------------------------------------------|------------|-----------|----------------------|-----------------------------|------------|--|--|--|--|--|
| 7/1/15 - 9/30/16<br>(project start to end of FY16) |            |           | 5 – 6/30/17<br>FY17) | FY 2018 – <b>N/A</b><br>N/A |            |  |  |  |  |  |
| DOE                                                | Cost-share | DOE       | Cost-share           | DOE                         | Cost-share |  |  |  |  |  |
| \$929,459                                          | \$185,892  | \$323,748 | \$64,750             | N/A                         | N/A        |  |  |  |  |  |



### **Project Plan and Schedule – Past Work**

- All Milestones except 3.2 met early or on time.
- Milestone 3.2 deferred (with DOE PM approval) to later in program due to task re-prioritization.

| Project Schedule                                               |              |                                            |              |              |              |              |              |              |              |              |              |              |
|----------------------------------------------------------------|--------------|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Project Start: 7/1/15                                          |              | Completed Work                             |              |              |              |              |              |              |              |              |              |              |
| Projected End: 6/30/17                                         |              | Active Task (in progress work)             |              |              |              |              |              |              |              |              |              |              |
|                                                                |              | Milestone/Deliverable (Originally Planned) |              |              |              |              |              |              |              |              |              |              |
|                                                                |              | Milestone/Deliverable (Actual)             |              |              |              |              |              |              |              |              |              |              |
|                                                                |              | FY2015 FY2016 FY2017                       |              |              |              |              |              |              |              |              |              |              |
| Task                                                           | Q1 (Oct-Dec) | Q2 (Jan-Mar)                               | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Past Work (Year 1)                                             |              |                                            |              |              |              |              |              |              |              |              |              |              |
| 1.1 RT QY of > 90% @600-630nm and <40nm FWHM                   |              |                                            |              |              |              |              |              |              |              |              |              |              |
| 2.1 < 10% QY, < 5nm change @ >1,000 hrs of REL testing         |              |                                            |              |              |              |              |              |              |              |              |              |              |
| 3.1 <5% QY change in cured polymer matrix                      |              |                                            |              |              |              |              |              |              |              |              |              |              |
| 3.2 NBD LED color point: 75%/65% single/5-run yield            |              |                                            |              |              |              |              |              |              |              |              |              |              |
| 4.1 Spectra w/ LER >350 lm/W @ CRI > 90 & 3000-3500K           |              |                                            |              |              |              |              |              |              |              |              |              |              |
| 4.2 NBD LED w/ 145 lm/W @ > 80 CRI (RT, 35 A/cm <sup>2</sup> ) |              |                                            |              |              |              |              |              |              |              |              |              |              |

See next slide for Current/Future work

## **Project Plan and Schedule – Current/Future Work**

| Project Schedule                                              |                |                                            |              |              |              |              |              |              |              |              |              |              |
|---------------------------------------------------------------|----------------|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Project Start: 7/1/15                                         | Completed Work |                                            |              |              |              |              |              |              |              |              |              |              |
| Projected End: 6/30/17                                        |                | Active Task (in progress work)             |              |              |              |              |              |              |              |              |              |              |
|                                                               |                | Milestone/Deliverable (Originally Planned) |              |              |              |              |              |              |              |              |              |              |
|                                                               |                | Milestone/Deliverable (Actual)             |              |              |              |              |              |              |              |              |              |              |
|                                                               |                | FY2                                        | 015          |              | FY2016       |              |              |              | FY2017       |              |              |              |
| Task                                                          | Q1 (Oct-Dec)   | Q2 (Jan-Mar)                               | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Current/Future Work (Year 2)                                  |                |                                            |              |              |              |              |              |              |              |              |              |              |
| 1.2 QY thermal droop of < 10% from RT to 85°C                 |                |                                            |              |              |              |              |              |              |              |              |              |              |
| 1.3 <10% LF & <2nm peak WL variation for 5 LED runs           |                |                                            |              |              |              |              |              |              |              |              |              |              |
| 2.2 REL testing acceleration factors determined               |                |                                            |              |              |              |              |              |              |              |              |              |              |
| 3.3 NBD-LED FF CAU within 0.004 du'v' of all-phosphor         |                |                                            |              |              |              |              |              |              |              |              |              |              |
| 3.4 < 10% NBD-LED LF drop, instant on to steady state         |                |                                            |              |              |              |              |              |              |              |              |              |              |
| 4.3 NBD-LED w/ >160 lm/W at >80 CRI, RT, 35 A/cm <sup>2</sup> |                |                                            |              |              |              |              |              |              |              |              |              |              |
| 4.4 NBD-LED w/ >180 lm/W peak at >80 CRI, RT                  |                |                                            |              |              |              |              |              |              |              |              |              |              |
| 5.1 Down-select demonstration luminaire form factor           |                |                                            |              |              |              |              |              |              |              |              |              |              |
| 5.2 Demonstration Luminaire w/ >150 lm/W, 90 CRI              |                |                                            |              |              |              |              |              |              |              |              |              |              |