Physics-based Interval Data Models to Automate and Scale Home Energy Performance Evaluations New 2016 Project

2017 Building Technologies Office Peer Review

Kurt Roth, Ph.D. <u>kroth@cse.fraunhofer.org</u> Fraunhofer USA Center for Sustainable Energy Systems (CSE)

🗾 Fraunhofer

USA

Project Summary

Timeline:

Start date: 9/21/2016 (contract received) Planned end date: 7/31/2019

Key Milestones

- 1. Homes with one CT + furnace: classification accuracy 75%+ for target ECMs, predict runtime with ±25% accuracy (June, 2017)
- 2. Homes with multiple CTs + furnace: 75%+ classification accuracy for target ECMs, predict runtime ±25% accuracy (July, 2018)

Budget:

Total Project \$ to Date:

- DOE: \$71,893 (as of 2/22/2017)
- Cost Share: \$33,683 (estimated, 32%)
- Total Project: \$99,836

Contracted Project \$:

- DOE: \$1,050,158
- Cost Share: \$492,061
- Total Project: \$1,542,219

Key Partners:

Eversource Energy

Holyoke Gas & Electric

National Grid

Project Outcome:

Validate algorithms that automatically analyze communicating thermostat (CT) data to identify homes with at least one target energy conservation measure (ECM):

• Attic and/or wall insulation; air sealing, and heating system upgrade.

Enable targeted and customized outreach by utility energy efficiency programs to:

- 1. Double the uptake of energy audits
- 2. Double the uptake of target ECMs
- 3. Provide remote EM&V of those retrofits

Project Motivation

Problem Statement:

- Space heating is the largest end use for homes in cold/very-cold climates
- Homes with poor/no insulation or inefficient heating systems have higher heating energy consumption
 - ~20-25 percent of homes
- Wall and/or attic insulation, air sealing, and HVAC system upgrades can significantly reduce space heating energy consumption
- Programs face high customer acquisition costs
- Slow market uptake of these proven measures
 - <1% of households/year in Massachusetts</p>

Sources: DeMark Home Ontario. S. Edwards-Musa, Eversource Energy.

Project Objectives and Benefits

Project Objective: Develop a tool for utility energy efficiency (EE) programs that analyzes communicating thermostat (CT) data to automatically identify and quantify the benefit of targeted and customized retrofit opportunities

Customer and Utility Benefits:

- Double the deployment rate of the target energy conservation measures (ECMs)
- Decrease the cost of EE programs via targeting
- Reduce retrofit performance risks using remote EM&V
- Increase customer engagement

Ultimate Vision: CTs deployed in most homes identify high-impact opportunities to reduce HVAC energy consumption *and* ensure retrofit performance

Sources: DOE BTO (2012), Massachusetts TRM (2013).

Project Impact

Project Impact:

- Basic ECMs identified have a technical heating savings potential ~0.5 quad/year
 - Consumer savings of **\$4-5 billion per year**
 - *Potential* annual *ROI on DOE investment of 3-4,000+*
 - Further savings from space cooling savings, deeper retrofits

BTO Building America Goals Addressed:

Affordably achieve 40% EUI reduction for existing homes

- Increase market demand for high-impact, high-performance home retrofits
 - Addresses two largest end uses: Space heating and cooling
- Reduce risk: Ensure retrofits achieve and maintain high performance
- Leverage dramatic growth in CT installed base = very low incremental cost

Approach: Technical Challenges

What the thermostat reports:

		Custom	Custom	Colondor	Due group	Cool Cot	Lloot Cot	Current	Current	Outdoor	Wind	Cool	Heat	
		system	System	Calendar	Program	Coor set	Heat Set	Current	Humidity		speed	Stage 1	Stage 1	- , ,
Date	Time	Setting	Mode	Event	Mode	Temp (F)	Temp (F)	Temp (F)	(%RH)	Temp (F)	(km/h)	(sec)	(sec)	Fan (sec)
3/29/2016	0:00:00	auto	heatOff		Sleep	82	63	70	39	43.8	16	0	0	0
3/29/2016	0:05:00	auto	heatOff		Sleep	82	63	69.9	39	43.8	16	0	0	0
3/29/2016	0:10:00	auto	heatOff		Sleep	82	63	69.8	40	43.8	16	0	0	0
3/29/2016	0:15:00	auto	heatOff		Sleep	82	63	69.8	40	43.8	16	0	0	0
3/29/2016	0:20:00	auto	heatOff		Sleep	82	63	69.8	40	43.8	16	0	0	0
3/29/2016	0:25:00	auto	heatOff		Sleep	82	63	69.7	40	43.8	16	0	0	0
3/29/2016	0:30:00	auto	heatOff		Sleep	82	63	69.6	40	42.7	22	0	0	0
3/29/2016	0:35:00	auto	heatOff		Sleep	82	63	69.4	40	42.7	22	0	0	0
3/29/2016	0:40:00	auto	heatOff		Sleep	82	63	69.3	40	42.7	22	0	0	0
3/29/2016	0:45:00	auto	heatOff		Sleep	82	63	69.1	40	42.7	22	0	0	0
3/29/2016	0:50:00	auto	heatOff		Sleep	82	63	69	40	42.7	22	0	0	0
3/29/2016	0:55:00	auto	heatOff		Sleep	82	63	68.9	40	42.7	22	0	0	0
3/29/2016	1:00:00	auto	heatOff		Sleep	82	63	68.9	40	42.7	22	0	0	0
3/29/2016	1:05:00	auto	heatOff		Sleep	82	63	68.8	40	42.7	22	0	0	0
3/29/2016	1:10:00	auto	heatOff		Sleep	82	63	68.7	40	42.7	22	0	0	0
3/29/2016	1:15:00	auto	heatOff		Sleep	82	63	68.6	40	42.7	22	0	0	0
3/29/2016	1:20:00	auto	heatOff		Sleep	82	63	68.6	40	42.7	22	0	0	0
3/29/2016	1:25:00	auto	heatOff		Sleep	82	63	68.5	40	42.7	22	0	0	0
3/29/2016	1:30:00	auto	heatOff		Sleep	82	63	68.5	40	42.6	19	0	0	0
3/29/2016	1:35:00	auto	heatOff		Sleep	82	63	68.4	40	42.6	19	0	0	0
3/29/2016	1:40:00	auto	heatOff		Sleep	82	63	68.4	40	42.6	19	0	0	0
3/29/2016	1:45:00	auto	heatOff		Sleep	82	63	68.3	40	42.6	19	0	0	0
3/29/2016	1:50:00	auto	heatOff		Sleep	82	63	68.2	40	42.6	19	0	0	0
3/29/2016	1:55:00	auto	heatOff		Sleep	82	63	68.2	41	42.6	19	0	0	0
3/29/2016	2:00:00	auto	heatOff		Sleep	82	63	68.1	41	42.6	19	0	0	0

Approach: Technical Challenges

Example of parameter estimation by curve fitting using CT data from a single night.

Sources: DOE, Ecobee, Fraunhofer CSE.

???

Approach: Technical Challenges and Approach

Key Challenges:

- Different physical parameters can create similar building thermal responses
- Different HVAC systems have different response times and characteristics
- Many homes have multiple CTs
- Thermal response "noise" from internal heat gains

Project Approach:

Analyze *real-world CT, interval, and home energy audit data* to successively refine home thermal response models to *accurately estimate home physical parameters* that correspond to the target ECMs *in increasingly complex situations*.

Energy Efficiency & Renewable Energy

Sources: DOE, Ecobee.

Approach: Technical Approach

Basic Approach:

- 1. Energy balances on the enclosure and indoor air
- 2. Fit real-world CT data sets to gray-box thermal models to determine the physical parameters
- 3. Compare physical parameters to thresholds indicative of retrofit opportunity

Approach to Overcoming the Technical Challenges: Data, Data, and More Data

Superior data quality and quantity enables a *hybrid gray-box thermal modeling and machine-learning approach* to develop and train algorithms

- CT and Home Energy Audit data for several hundred + homes
- Deep "ground truth" data from 80 homes with CTs
 - Home energy audit with blower door testing
 - Interval gas (hourly) and electric (5-minute) data

Approach: Scaling for Impact

- 1. Project Team: Two leading IOUs and innovative muni
 - Leverages data from existing CT programs
- 2. Project integrates randomized controlled trial (RCT) to validate key hypothesis of project:

Do targeted outreach and customized EE offers double the uptake of home energy audits and targeted ECMs?

- 3. Project Deliverables to Scale Impact
 - CT Data Specification
 - Best Practices Guide for EE Program Integration
- 4. Near-term outcome: Integrate with Eversource and National Grid EE programs
- 5. Target Future Outcomes:
 - Leverage growth in CTs projected ~25MM in 2019
 - CT data specification adopted by other utilities, EE programs, and EnergyStar
 - CT analytics used by other EE programs

national**grid**

Source: ACHRNews (2015).

Progress and Accomplishments – Note: New Project

- Reviewed literature on lumped parameter/gray box modeling and identification
 - Second-order model should be sufficient (considered higher-order)
 - Curve-fitting-based approach
- Derived closed-form solution to 2nd-order gray-box differential equations
- Developed a program for parameter estimation in MATLAB
 - Fitting the closed-form solution for room T° to observed T° (from CT data)
 - Estimates R-value and heat flux using single or multiple nights of data
 - Can also estimate air leakage parameter with data from multiple nights
 - Preliminary testing with existing, proprietary CT data
- Developed a program for fuel consumption estimation in MATLAB
 - Based on PRISM (PRInceton Scorekeeping Method)
 - Calculates heating energy consumption rate
 - Given the estimated heat flux, calculates HVAC efficiency

Progress and Accomplishments – Note: New Project

BP1 Accuracy Milestones are for homes with *one CT and heating system*:

- a) ±25% accuracy in HVAC runtime
- b) 75%+ classification accuracy
- **BP2**: Extend accuracy to homes with *multiple* CTs, energy savings estimates for ECMs. **Lessons Learned to Date**:
- CT data access and resolution varies greatly among CT providers
- Energy audit information vs. data

Project Integration: Team comprises utility residential and evaluation teams

- Discussions with leading CT manufacturers about data resolution and sharing
- CPUC, NYSERDA, and PG&E have expressed interest in the project
- *Future:* Share and scale the project outcomes through leading utility EE forums

Partners, Subcontractors, and Collaborators: Core team has three utility members

- Data sharing: CT and home energy audit data, interval data
- Planning and execution of the RCT pilot to evaluate effectiveness
- Development of Best Practices Guide for integration of the algorithms with EE programs (for both increasing EE deployment and EM&V)

Communications:

- "Communicating Thermostats as a Tool for Home Energy Performance Assessment" *Proc. 2017 IEEE Intl. Conf. on Consumer Electronics (ICCE).* Jan.
- 2017 Better Buildings Summit Accepted invitation to present

Conclusions:

- Systematic data-driven approach to develop algorithms
- Identifies high-impact retrofits for largest residential end use
- Increases market demand for impactful retrofits and validates performance
- Clear path to commercialization and scale through leading utility EE programs

Next Steps and Future Plans:

- Further refine algorithms for single-family homes with furnace + 1CT
- Secure Human Subjects approval
- Start working with larger Eversource and National Grid data sets
- Recruit 80 HG&E homes for project deploy CTs, complete energy audits

Potential Project Extensions to Increase Project Impact:

- Validate effectiveness in more moderate climates
- Expand to space heating with heat pumps
- Expand to space cooling applications
 - Deeper integration of electric interval data

REFERENCE SLIDES

Project Budget

Project Budget: DOE Funds: \$1,050,158, Team Cost Share: \$492,061; Total \$1,542,219

Variances: None to date.

Federal Cost to Date: \$71,893 as of Feb. 22, 2017; (7% of total federal funds) Cost Share to Date: \$33,683 estimated (32%)

Additional Funding: \$492K in cost share from utility partners and Fraunhofer.

	Budget History & Projections										
9/21/16	5– FY 2016	FY	2017	FY 2018 - 7/31/19							
(past)		(current	& planned)	(planned)							
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share						
\$18,398	\$11,058	\$331,760	\$153,012	\$700,000	\$327,991						
38% c	ost share	32% c	ost share	32% cost share							

Project Start: 9/21/2016 (contract received, backdated to 8/1/2016)					Completed work				М	Expe	ected	d Mil	lilestone	ne
Projected End: 7/31/2019				Active Task Future Task G				Μ	Updated Milestone					
								iNG	Go/No-Go Decis			ecisic	on Poin	
	FY 2016 FY 201		17	17		FY 2	018			FY 2	019			
	uly-Sept)	Oct-Dec)	an-March)	Apr-June)	uly-Sept)	Oct-Dec)	an-March)	Apr-June)	uly-Sept)	Oct-Dec)	an-March)	Apr-June)	uly-Sept)	
	74 (J	21 (C	22 (J	J 3 (/	24 (J	21 (C	22 (J	J 3 (/	24 (J	д1 (C	22 (J	J 3 (/	24 (J	
Past Work	0	0	0	0	0	0	<u> </u>	0	<u> </u>	0	0	0	0	
Q1 Milestone: Draft CT Data Specification		М	М											
Current/Future Work														
Q2 Milestone: Data from 80+ homes			М	М										
Q3 Milestone: Data from 200+ homes				Μ										
Q3 Milestone: Furnace + 1CT Algorithm Accuracy				Μ										
Q4 Milestone: Draft EE Program Integration Plan					Μ									
Q5 Milestone: Boiler + 1CT Algorithm Accuracy						Μ								
BP1 Go/No-Go Decision Point: 1CT Accuracy						GN	G							
Q6 Milestone: 2CT Models Demonstrated							Μ							
Q7 Milestone: 2CT Model Accuracy									Μ					
Q8 Milestone: Retrofit Energy Savings Accuracy									Μ					
Q8 Milestone: Field RCT Test Plan Completed									Μ					
Q8 Miletstone: Final EE Program Integration Plan									Μ					
Q9 Milestone: Final CT Data Specification											Μ			
BP2 Go/No-Go Decision: 2CT Model Accuracy									GN	G				
BP2 Go/No-Go Decision: Retrofit Energy Savings Accuracy									GN	G				
Q10 Milestone: Field RCT Implemented											Μ			
Q11 Milestone: RCT Evaluation Completed												Μ		
Final Reporting: Final Project Report													FR	
Final Reporting: Best Practices Guide for Scale Up													FR	