Bioenergy Technologies Office

2017 BETO Project Peer Review

Overview of 2016 Billion-Ton

Report Volume 1

Mark P. Elless, Ph.D.*
Technology Manager,
Feedstock Supply and Logistics
March 7, 2017

*On behalf of entire team

- Purpose of the 2016Billion-Ton Report
 - Evaluate biomass resource potential
 - Improve and expand upon the previous studies
 - Greater detail of dedicated energy crop systems, revised BMP
 - Analysis of logistics costs to deliver potential supply
 - Resource assessment will include risk analysis and new feedstocks, including algae, miscanthus, eucalyptus, and energy cane.
 - Volume 2 features
 environmental analyses
 including greenhouse gases,
 water, air emissions, and
 biodiversity

2005 Study	2011 Update	2016 Report	
National estimates – no spatial information	County-level with aggregation to state, regional and national levels	County-level with regional analysis of potential delivered supply	
No cost analyses – just quantities	Supply curves by feedstock by county – farmgate/forest landing	More detailed costing analysis to provide cost of production along supply chain to new facilities	
No explicit land use change modeling	Land use change modeled for energy crops	LUC modeled and accessed for soil carbon impacts	
Long-term, inexact time horizon (2005; ~2025 & 2040-50)	2012 – 2030 timeline (annual)	2016-2040 timeline (annual)	
2005 USDA agricultural projections; 2000 forestry RPA/TPO	2010 USDA agricultural projections: 2010 FIA inventory and 2007 forestry RPA/TPO	2015 USDA agricultural projections; 2012 USDA Census	
Crop residue removal sustainability addressed from national perspective; erosion only	Crop residue removal sustainability modeled at soil level (wind & water erosion, soil C)	Crop residue considered in scenario of integrated landscape management	
Erosion constraints to forest residue collection	Greater erosion plus wetness constraints to forest residue collection	Volume 2 includes robust analyses of environmental effects	
100th meridian used for land conversion constraint; permanent pasture excluded	100th meridian used for land conversion constraint; permanent pasture allowed to convert at low rate	Precipitation-based constraint (25"/year) applied; permanent pasture allowed to convert at low rate	

Outline of 2016 Billion-Ton Report Volume 1

*Released: July 12, 2016

Author and Contributor Organizations*

Authors

- Allegheny Science & Technology
- Energetics, Inc.
- University of Tennessee
- University of Idaho
- North Carolina State University
- Oak Ridge National Laboratory
- Idaho National Laboratory
- USDA Forest Service

- BCS, Inc.
- Sun Grant Regional Partnership
- University of Tennessee
- SUNY-Syracuse
- South Dakota State University
- Oregon State University
- Oak Ridge National Laboratory
- National Renewable Energy Laboratory
- Environmental Protection Agency
- USDA Forest Service
- USDA Agricultural Research Service
- USDA National Institute of Food and Agriculture
- USDA Office of Energy Policy and New Uses

Other Contributors

^{*}And many more!

Multiple Reviewers (28) attended Volume I workshop

Government

- Environmental Protection Agency
- Department of Energy
- Federal Aviation
 Administration

Academia

- University of California - Davis
- University of Georgia
- North Carolina State University
- University of Arizona
- University of Minnesota
- Iowa State University
- University of Illinois

Non-Government Organizations

- National Council for Air & Stream Improvement
- Union of Concerned Scientists
- Pinchot Institute

Industry

- Shell
- Forest Concepts
- MaterEngineering
- GreenWood Resources
- AGCO Corp.
- Antares
- Resource Dynamics
- Sapphire Energy
- Qualitas Health
- Algenol Biotech
 LLC

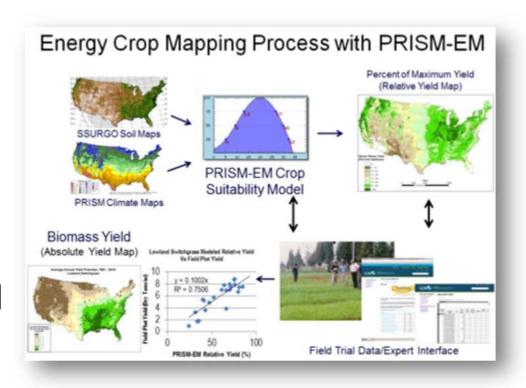
Key Assumptions/Issues

- Models meet food, forage, feed, and fiber (even export) requirements to 2040.
- Current uses are estimated to 2017, held constant to 2040, and all increases become part of the estimated potential.
 - Examples of current uses: solids, fuels for biopower and heat, corn-starch ethanol, lignocellulosic biofuels, biodiesel, and biochemicals.
- Supply cost curves are to farmgate/roadside with case-study estimates to throat.
- Biomass potential is a function of cost-to-roadside, year, and scenario.
 - Base-case scenario:
 - Agriculture: 1% annual increase in yield through 2015-2040
 - Forestry: moderate housing demand-low wood energy demand
 - High-yield scenario:
 - Agriculture: 3% annual increase in yield through 2015-2040
 - Forestry: high housing demand high wood energy demand
- Agriculture and forest lands are held constant but allocation changes occur in agriculture. Conservation Reserve Program lands are excluded.
- Underlying assumptions are intended to be "conservative" and have built-in "sustainability" considerations.

Models/Data Used in BT16 Volume 1

Models

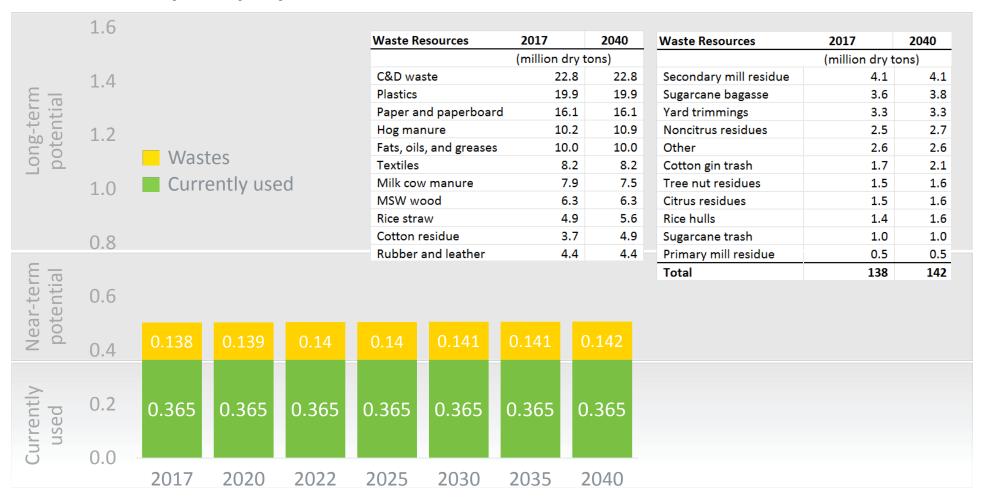
- POLYSYS: Policy Analysis System
- ForSEAM: Forest Sustainable and Economic Analysis Model
- SRTS: Subregional Timber Supply Model

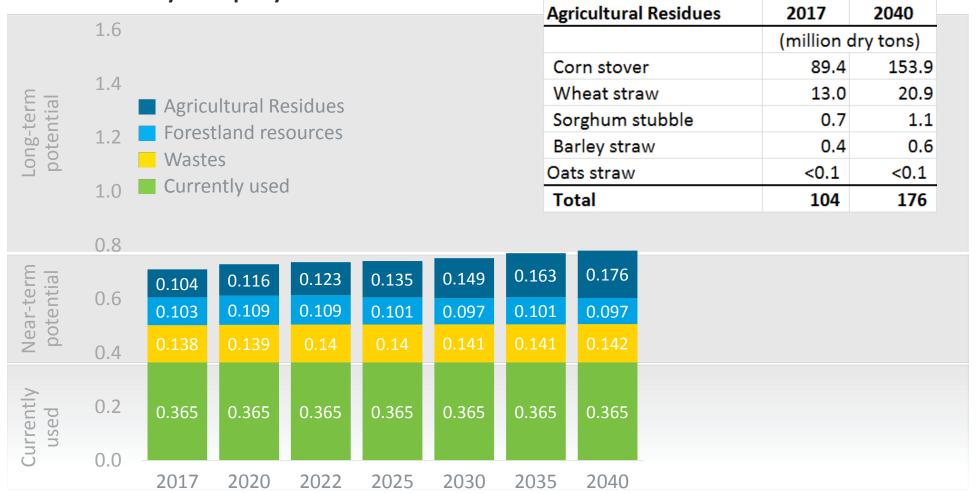

Data

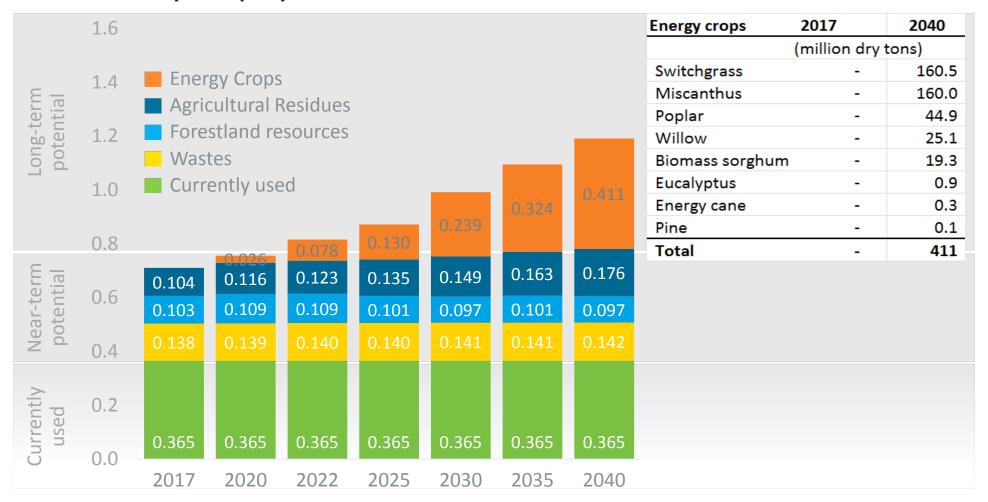
- USDA Long-Term Agricultural Projections
- U.S. Forest Service RPA (10-year forest assessment) and FIA
- EIA Monthly Energy Review, Annual Energy Outlook, Consumption Surveys and other data
- PRISM (climate) and SSURGO (soils) high resolution data
- Yield maps from field trials on energy crops, including the SunGrant Regional Feedstock Partnership.

- Estimate current use of biomass for energy
- Apply state-of-the art science to estimate resource potential
- Simulate potential supply

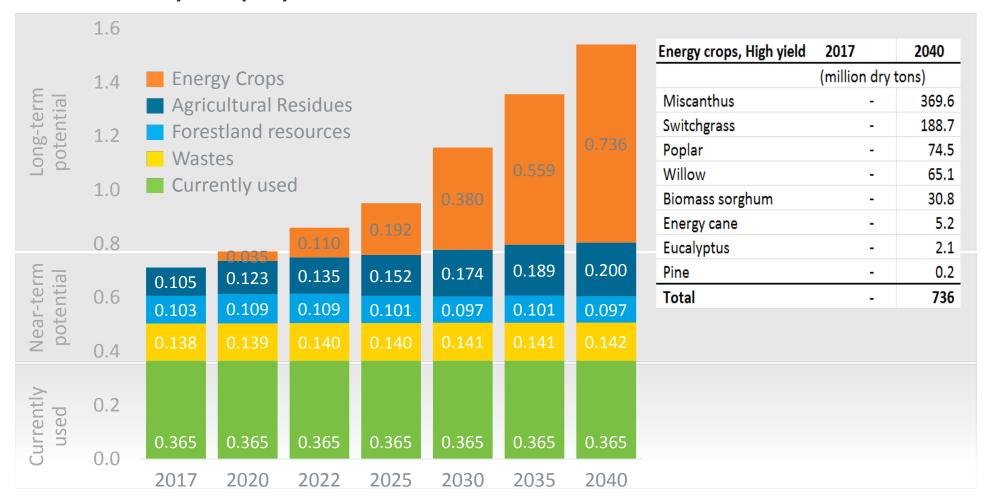
 not a supply or demand
 prediction




Billions of Dry Tons per year



Billions of Dry Tons per year						Fo	restland I	Resources	2017	2040
	1.6	1.6							(million dry t	ons)
Long-term potential								s, hardwood	39.0	24.9
	1.4					W	Whole trees, softwood		28.1	33.4
								t residue	12.2	13.0
	1.2	Forestland resources Wastes					sidues, h	ardwood	6.9	8.0
							sidues, so	oftwood	6.8	10.0
	1.0	Curr	ed		Re	sidues, m	ixedwood	4.2	2.7	
	1.0						Whole trees, mixedwood		2.8	2.4
	0.8						her fores	t thinnings	2.6	2.6
	0.0					To	otal		103	97
Near-term potential	0.6									
	0.0	0.103	0.109	0.109	0.101	0.097	0.101	0.097		
	0.4	0.138	0.139	0.14	0.14	0.141	0.141	0.142		
Currently used										
	0.2	0.365	0.365	0.365	0.365	0.365	0.365	0.365		
	0.0									
		2017	2020	2022	2025	2030	2035	2040		

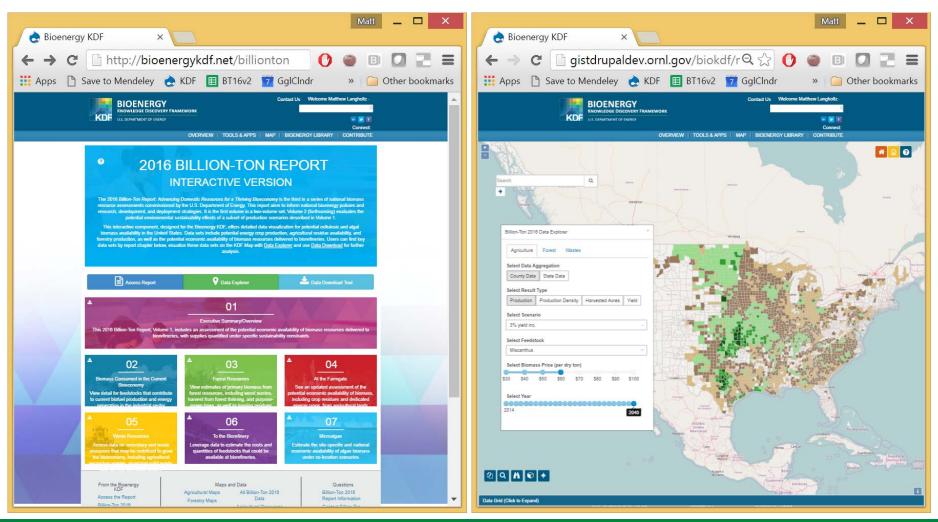


Current and Potential, High-yield, \$60/dt

Feedstock^a Availability Scenarios

Price per dry ton ^b	Near term	Long term Base case	Long term High yield
Roadside at ≤ \$60	310	679	985
Delivered ≤ \$84	217 ——	467	825
Delivered ≤ \$100	217	564	825
Unused ^c	93	114	160

^A Includes agricultural (biomass sorghum, corn stover, miscanthus, switchgrass, and yard trimmings) and woody (whole trees, logging residues, woody portions of C&D and MSW, and woody energy crops) feedstocks.


^B Average costs used

^c Unused resources are those delivered at greater than \$100 per ton, lost along the supply chain, or part of the overcontracting buffer included in the near term systems to mitigate supply risk.

http://bioenergykdf.net/billionton

Volume 1 Key Conclusions

- Still have the potential for more than a billion tons of biomass available as early as 2030, and that continues to increase through 2040
 - 1-1.2 billion tons in 2030 and 1.2-1.5 billion tons in 2040
 - Projection based on \$60/dt
 - Equivalent to 50-60 billion gallons of gasoline in 2030 at 50 gge/ton (conservative estimate as target is 87 gge/ton in 2017)
- Accounting for delivery to biorefinery lowers potential
 - 67-83% of potential biomass can be produced and delivered to biorefinery at less than \$84/dt (about \$1 of the \$3 per gge target)
- Land to energy crops
 - Up to 64 million acres in 2040 for base case
 - Up to 88 million acres in 2040 for the high scenario
- Forest resources are regionally specific, and subject to macroeconomic and local market forces
- Algae has substantial potential, but prices will need to decrease for that potential to be realized

Thank You

For questions, please contact Mark Elless at

202-586-6501

Mark.Elless@ee.doe.gov

or

Visit the KDF at

http://bioenergykdf.net/billionton

Summary of Market Priced Potential Resources at \$60/dt

	2017	2022	2030	2040				
Feedstock	Million dry tons							
Base-case scenario								
Forestry resources currently used	171	171	171	171				
Agricultural resources currently used	157	157	157	157				
Waste resources currently used	30	30	30	30				
Forestry resource potential	88	93	81	82				
Agricultural residues and waste resources potentially available	261	285	314	344				
Energy crops	0	78	239	411				
Algae				47*				
Total	707	814	993	1242				
High-yield sce	nario							
Forestry resources currently used	171	171	171	171				
Agricultural resources currently used	157	157	157	157				
Waste resources currently used	30	30	30	30				
Forestry resource potential	79	83	72	61				
Agricultural residues and waste resources potentially available	262	297	339	368				
Energy crops	0	110	380	736				
Algae				47*				
Total	700	848	1150	1570				


\$60/dt is based on supply curve and does not account for delivery

^{*}Estimates of algae availability range from 23- 110 million dry tons at costs from \$490 - \$2889, as shown in Table ES.3

Key Assumptions/Issues

- Biomass potential is a function of cost-to-roadside of supply locations, year, and scenario (does not include use).
- Excludes policy (RFS starches/biodiesel included in current uses).
- Models meet food, forage, feed, and fiber (even export) requirements to 2040. (USDA Long-Term Outlook and Resources Planning Act).
- New feedstocks added, e.g., algae, miscanthus, energy cane, and eucalyptus.
- Agriculture and forest lands are held constant but allocation changes occur in agriculture. Conservation Reserve Program lands are excluded.
- Underlying assumptions are intended to be conservative and have built-in "sustainability" (environmental quality) considerations.
 - Sustainability categories:
 - Soil quality
 - Water quality
 - Water quantity
 - Greenhouse gas emissions
 - Biodiversity

