Fuel Cell Technologies Office Webinar

Energy Efficiency & Renewable Energy

Hydrogen Financial Analysis Scenario Tool (H2FAST) Model Summary and Demonstration

Michael Penev Sr. Analyst National Renewable Energy Laboratory (NREL)

February 14, 2017

• Please type your questions into the question box

File View Help	151 ×	
- Audio		
Telephone		
O Mic & Speakers		
Dial: +1 (805) 309-002 Access Code: 558-060-339 Audio PIN: 24	1	
 If you're already on the call, press #24# no	W.	
Questions	5	
	~	
	~	
[Enter a question for staff]		
	Send	
Webinar Now Webinar ID: 664-973-082		
GoTo Webinar		

Funding for H2FAST development was provided by the U.S. Department of Energy's Fuel Cell Technologies Office, Systems Analysis Program (Fred Joseck)

Model development contributors

- California Fuel Cell Partnership
- H2USA Investment and Finance Working Group (IFWG) Provided requirements & review
 - (California Energy Commission, California Governor's Office, California Air Resources Board)
- Additional external reviewers
 - (Welford Energy, Curry & Co., Aaqius, Energy Independence Now)

Federal Laboratory & University

- Ricardo Bracho, MBA and Michael Elchinger, MBA (NREL) Compliance with accounting & finance standards
- Jeff Grover, DBA (CEO, Grover Group Inc.) Line-by-line model review & validation

Webinar Overview

What is H2FAST (Power Point)

- User inputs
- Framework
- Outputs
- Analysis steps outline

Example analysis (Excel version of H2FAST)*

- Retail station financial analysis (Basic interface)
- Advanced inputs (incentives, price escalations, demand ramp-up)
- Risk analysis (uncertainty handling of inputs, ranges of outcomes)

* Model can be downloaded by clicking "Spreadsheet Version" on http://www.nrel.gov/hydrogen/h2fast/

H2FAST Overview

What is H2FAST

- Financial model for hydrogen systems*
- Simple interface, rigorous analysis
- Fully reviewed by financial industry experts

What analysis does it do

- Retail station finances
- Delivery & distribution
 - pipelines
 - truck delivery
- Production pathways, for example:
 - steam methane reformers
 - electrolysis
 - fuel cell combined heat, hydrogen, power

Who uses the model

- Retail station operators
- Government & policy makers
- Equity and debt investors
- Strategic investors (gas suppliers, car makers)
- Equipment manufacturers
- Academic institutions & national laboratories

* H2FAST is <u>not</u> a capital cost estimator.

User inputs

- Capital costs
- Incentives (grants, operating incentives, take or pay contracts)
- Maintenance cost
- Demand profile (e.g. construction time, demand ramp-up)
- Feedstock use (consumption, prices, escalation)
- Retail price of hydrogen
- Financial parameters (e.g. depreciation schedule, interest rates, etc.)

Model computation framework: Generally Accepted Accounting Principles (GAAP)*

- Income statement projections (revenues, expenses, taxes)
- <u>**Cash flow statement**</u> projections (cash on hand, capital expenditures, financing transactions)
- Balance sheet projections (assets, liabilities, equity)

Model outputs

- <u>Financial performance parameters</u> (e.g. Internal rate of return, pay-back period, break-even price of hydrogen)
- <u>Time series charts</u> for all line item parameters
- Per-kilogram cash flows break-down (revenues, expenses, financing cash flows)
- Uncertainty distributions (for risk analysis studies)

* Model can perform analysis compatible with International Financial Reporting Standards (IFRS)

Hypothetical system scenario

Á	Analysis scope)				
natural gas	Combined Heat Hydrogen & Power (CHHP)	electricity waste heat				
electricity		hydrogen	C	ompression, Storage, Dispensing (CSD)	hydrogen	B

Note: Breakdown of system is not necessary but is instructive to model flexibility and ease of use.

Step 1: Specify installation & maintenance costs

Station being analyzed (yellow background)	1	2	3
Station name	200 kg/day CHHP (production only)	200 kg/day CSD	200 kg/day CHP & CSD (sum of 1 & 2)
Capacity (kg/day)	250	250	250
Equipment capital cost	\$ 3,000,000	\$ 1,500,000	\$ 4,500,000
Non-depreciable fixed assets (e.g. land)	\$-	\$ -	\$-
Installation cost	\$ 500,000	\$ 500,000	\$ 1,000,000
End of project sale of non-depreciable assets	\$-	\$ -	\$-
Planned & unplanned maintenance (\$/year)	\$ 200,000	\$ 150,000	\$ 350,000

Step 2: Specify feedstock & co-product volumes

Coproduct specifications			
Usable waste heat (mmBTU/kg)	0.040	-	0.040
Electricity co-production (kWh/kg)	44.41	-	44.41
User defined co-product (units/kg)	-	-	-

Feedstock use			
Delivered hydrogen gas trailer (kg/kg)	-	-	-
Delivered hydrogen liquid trailer (kg/kg)	-	-	-
Delivered hydrogen pipeline (kg/kg)	-	1.00	-
Electricity use (kWh/kg)	-	1.72	1.72
Natural gas use (mmBTU/kg)	0.384	-	0.384
User defined feedstock (units/kg)	-	-	-

Note: Costs are fictitious and intended to show analysis methodology—not showcase the application.

Column 1

- Reflects CHHP production only
- Co-product generation normalized per kilogram of hydrogen produced

Column 2

- Reflects dispensing only
- Hydrogen purchased from CHHP system
- Electricity purchased for compression and cooling

Column 3

Reflects the entire system

Note: Breakdown of system is not mandatory but helps with clarity. Only highlighted entry (yellow) is analyzed.

Step 3: Specify feedstock & co-product pricing

Products Value	 	-
Price of hydrogen at project onset (\$/kg)	10.00	-
Price escalation rate (% annually)	1.9%	
Usable waste heat (\$/mmBTU)	\$ 5.00	
Escalation rate of cost (% annually)	1.9%	
Electricity co-production (\$/kWh)	\$ 0.10	
Escalation rate of cost (% annually)	1.9%	
User defined coproduct (\$/unit)	\$ -	
Escalation rate of cost (% annually)	1.9%	
Feedstock Cost		
Cost of delivered hydrogen via gas truck (\$/kg)	\$ -	
Escalation rate of cost (% annually)	1.9%	
Cost of delivered hydrogen via liquid truck (\$/kg)	\$ -	
Escalation rate of cost (% annually)	1.9%	
Cost of delivered hydrogen via pipeline (\$/kg)	\$ 2.00	
Escalation rate of cost (% annually)	1.9%	
Cost of electricity (\$/kWh)	\$ 0.100	
Escalation rate of cost (% annually)	1.9%	
Cost of natural gas (\$/mmBTU)	\$ 5.00	
Escalation rate of cost (% annually)	1.9%	
Cost of user defined feedstock 1 (\$/unit)	\$ -	
Escalation rate of cost (% annually)	1.9%	

Note: Price of hydrogen can be specified as for pricetaker modeling or set equal to "Estimated break-even leveraged price (\$/kg)" for price-setter modeling.

Only relevant costs need to be updated. Feedstock or co-products that are not used do not impact analysis.

Step 4: Specify project financial details

Other operating expenses	
Credit card fees (% of sales)	2.50%
Sales tax (% of sales)	2.25%
Road tax (\$/kg)	\$ 0.36
Road tax escalation rate (%/year)	1.90%
Staffing labor hours (h/year-station)	-
Labor rate (\$/h)	\$ 40
Labor escalation rate (% annually)	1.9%
Licensing & permitting (\$/year-station)	\$ 1,000
Licensing & permitting escalation rate (%/year)	1.9%
Rent of land (\$/station-year)	\$ 3,000
Rent escalation (% annually)	1.9%
Property insurance (% of dep capital)	1.5%
Selling & administrative expense (% of sales)	0.5%

Sales Specification	
Project start year	2015
Project operational life (years)	20
Installation time (months)	18
Demand ramp-up (years)	0.0
Long-term nominal utilization (%)	80%

Take or Pay Contract Specification	
Price of unsold hydrogen	-
Price linear decay (% of initial/year)	0%
Contract sunset (years)	15.00
Utilization supported up to (% of capacity)	50%

Financing Information	
Total tax rate (state, federal, local)	38.50%
Capital gains tax	15.00%
Is installation cost depreciable?	No
Are operating incentives taxable?	No
Is capital incentive depreciable?	Yes
Are tax losses monetized (tax equity application)	Yes
Allowable tax loss carry-forward	7 year
General inflation rate	1.90%
Depreciation method	MACRS
Depreciation period	7 year
Leveraged after-tax nominal discount rate	10.0%
Debt/equity financing	0.5
Debt type	Revolving debt
If loan, period of loan (years)	20
Debt interest rate (compounded monthly)	6.00%
Cash on hand (% of monthly expenses)	100%

Note: Take-or-pay contract specifications allow for utilization risk mitigation strategy analysis.

Select Interface

Restore defaults

0.020

On/Off

Run 1,000

Step 5: Specify uncertainties & run risk analysis

Click "Advanced"

Coproduct Specifications

Usable waste heat (mmBTU/kg)

Electricity co-production (kWh/kg)

User defined co-product (units/kg)

- Click "Risk Analysis On/Off"
- Specify uncertainty of parameters (triangular distribution)

	Most likely value	Minimum value	Maximum value
Capacity (kg/day)	250	250	250
Equipment capital cost	4,500,000	3,150,000	6,750,000
Non-depreciable fixed assets (e.g. land)	-	-	-
Installation cost	1,000,000	1,000,000	1,000,000
End of project sale of non-depreciable assets	-	-	-
Planned & unplanned maintenance (\$/year)	350,000	350,000	350,000
Maintenance escalation (% annually)	1.9%	1.9%	1.9%

0.040

44.41

For example, equipment capital cost and heat utilization varied.

Model uses triangular distribution.

Risk Analysis

Basic

Advanced

0.040

 Click "Run 1,000" – to perform Monte Carlo analysis with 1,000 iterations.

0%

-6.90%

-4.90%

-2.90%

Examine results

Leveraged, after-tax, nominal IRR

3.10%

5.10%

7.10%

9.10%

11.10%

○ -0.50%

1.10%

-0.90%

Example Analysis – CHHP, Hypothetical 200 kg/day

U.S. DEPARTMENT OF ENERGY Renewable Energy Fuel Cell Technologies Office | 14

Example: Estimate capital incentives for \$10/kg hydrogen

Overall Financial Performance Metrics		ost likely value
Leveraged, after-tax, nominal IRR		/ 5.88%
Profitability index		1.35
Investor payback period		/ 10 years
First year of positive EBITD	1	analysis year 2
After-tax, nominal NPV @ 10% discount	\$	(894,655)
Estimated break-even leveraged price (\$/kg)	\$	12.45

Station being analyzed (yellow background)	1	2	3
Station name	200 kg/day CHHP (production only)	200 kg/day CSD	200 kg/day CHP & CSD (sum of 1 & 2)
Incentives Information			
One time capital incentives (grant or ITC)	\$-	\$-	\$ -
Annual operating incentives (grant or PTC)	\$-	\$ -	\$-
Per kilogram incentive	\$-	\$ -	\$-
Incidental revenue (\$/year)	\$ -	\$ -	\$ -

Goal Seek can be used to solve for inputs.

In this example, it takes \$1.097 million of capital incentive to yield \$10/kg hydrogen @ 10% IRR.

	_				
Overall Financial Performance Metrics	Most likely value	Station being analyzed (yellow background)	1	2	3
Leveraged, after-tax, nominal IRR	10.00%		200 kg/day CHHP	200 kg/day CSD	200 kg/day CHP &
Profitability index	1.84	Station name	(production only)	200 kg/uay C3D	CSD (sum of 1 & 2)
Investor payback period	8 years	Incentives Information			
First year of positive EBITD	analysis year 2	One time capital incentives (grant or ITC)	\$-	\$-	\$ 1,096,987
After-tax, nominal NPV @ 10% discount	\$ (1)	Annual operating incentives (grant or PTC)	\$-	\$-	\$-
Estimated break-even leveraged price (\$/kg)	\$ 10.00	Per kilogram incentive	\$ -	\$ -	\$-
	Ş 10.00	Incidental revenue (\$/year)	\$-	\$-	\$-

Example analysis (Excel version of H2FAST)*

- Retail station financial analysis (Basic interface)
- Advanced inputs (incentives, price escalations, demand ramp-up)
- Risk analysis (uncertainty handling of inputs, ranges of outcomes)

* Model can be downloaded by clicking "Spreadsheet Version" on http://www.nrel.gov/hydrogen/h2fast/

• Please type your questions into the question box

	File View Help	_09×	
	- Audio		
—	 Telephone 		
	Mic & Speakers		
	Dial: +1 (805) 309- Access Code: 558-060-339 Audio PIN: 24	0021	
	If you're already on the call, press #24	# now.	
	Questions	5	
		~	
		~	
	[Enter a question for staff]		
		Send	
	Webinar Now Webinar ID: 664-973-082		
	GoTo Webinar		

Thank you

Fred Joseck Fred.Joseck@ee.doe.gov Michael Penev Mike.Penev@nrel.gov

hydrogenandfuelcells.energy.gov