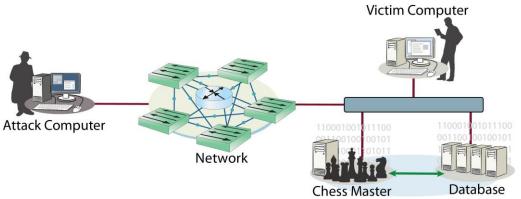
Adrian R Chavez Sandia National Laboratories

Artificial Diversity and Defense Security (ADDSec)

Cybersecurity for Energy Delivery Systems Peer Review December 7-9, 2016


Summary: ADDSec

Objective

Introduce Moving Target
 Defense (MTD) and Dynamic
 Defense (DD) technologies to
 proactively defend energy
 delivery systems from the
 reconnaissance phase of an
 attack while minimizing
 operational impacts.

Schedule

- February 2015-February 2018
- Initial Ft. Belvoir microgrid scenario developed (July 2016)
- Completed proof-of-concept demonstration (Oct 2016)
- Interoperable MTD reference
 implementation SEL-2740

Performer:	Sandia National Laboratories
Partners:	Schweitzer Engineering Laboratory (SEL), Chevron, Lawrence Livermore National Laboratory (LLNL), Grimm
Federal Cost:	\$3M
Cost Share:	\$0
Total Value of Award:	\$3M
Funds Expended to Date:	33%

Advancing the State of the Art (SOA)

- Current MTD and DD approaches do not take into account energy sector needs
 - Real-time constraints
 - High availability
 - Minimal operational impact
- Automate detection and mitigation strategies
 - Ensemble of machine learning algorithms
 - Software Defined Networking (SDN) to whitelist traffic
 - Randomize network configurations (IP addresses, application port numbers)
 - Randomize application libraries
- Working with partners to drive requirements and solution
 - Representative testbed and microgrid environment
 - Independent 3rd party red team assessment
 - SME cross-cutting government, vendors, and end users

Advancing the State of the Art (SOA) (Cont.)

- ADDSec technology developed with transition path to end user
 - Reference implementation completed
 - Operational performance metrics collected
 - Interoperable solution using multiple vendor SDN technologies including SEL-2740
 - Open source SDN controller supported by major SDN switch manufacturers
 - Published results near conclusion of project
- Additional layer of defense to actively defend control systems
 - Framework to automatically detect and respond to threats
 - Introduce uncertainty to an adversary in the early phases of an attack
 - Scalable solution that is transparent to end devices
 - Modular implementation that supports new mitigation strategies to be integrated
 - Improve situational awareness and increase adversarial workload

Challenges to Success

MTD transparency to maintain high availability

- Implementation leverages SDN technology
- Assume mix of SDN and non-SDN capable devices
- Working with OpenFlow 1.3 standard and actively developed controller

DD data collection

- Leveraging publicly available data sets
- Working with partners to standup microgrid environment

Deployment within representative environment

- SEL provides vendor perspective
- LLNL integrates previous CEDS funded NeMS tool
- Ft. Belvoir implementing microgrid to evaluate ADDSec

Progress to Date

Major Accomplishments

- Operational requirements collected during kickoff meeting
- Ported POX controller to OpenDaylight controller
- Scaled MTD deployment to 300 node environment
- MTD performance metrics collected
- Combine DD and MTD into proof-of-concept demonstration
- Developed network schematics to be implemented at Ft. Belvoir
- SEL-2740 released end of September 2016
- LLNL integrated SDN flows into NeMS tool

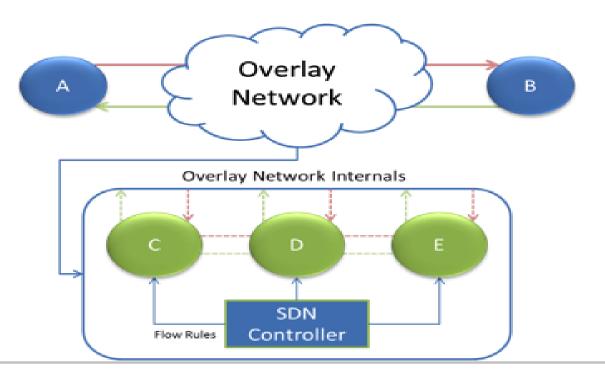
Collaboration/Technology Transfer

Plans to transfer technology/knowledge to end user

- Selected into DHS Transition To Practice program for additional pilot partners
- Designed to interoperate with SEL-2740 SDN-capable switch
- Independent 3rd party red team assessment of reference implementation
- Publish implementation and results
- TRL 8 System/Subsystem Development at project completion
- Communicate results to Industry Advisory Board established through CEDS outreach tasks

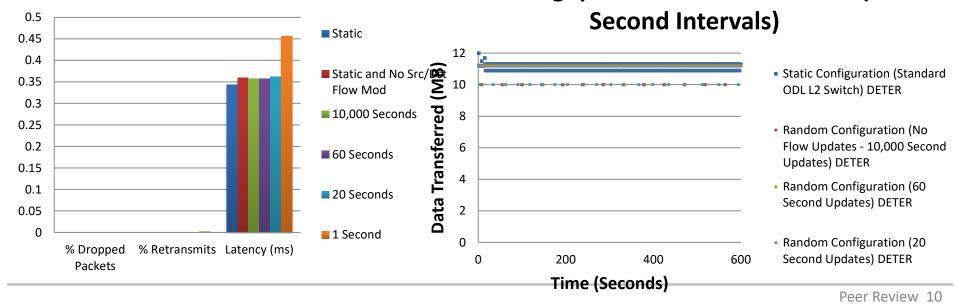
o 20+ Utilities, asset owners and end users

 Demonstration at Ft. Belvoir microgrid planned for 2nd Quarter FY18

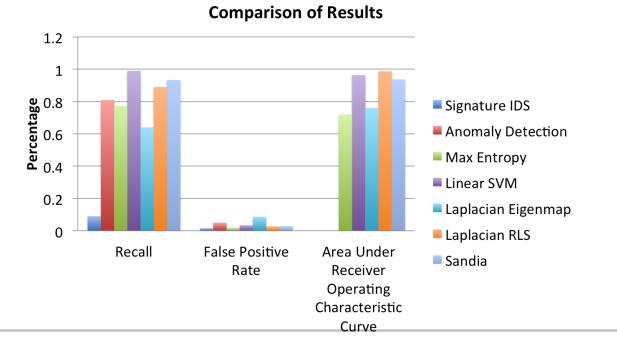

Next Steps for this Project

Approach for the next year or to the end of project

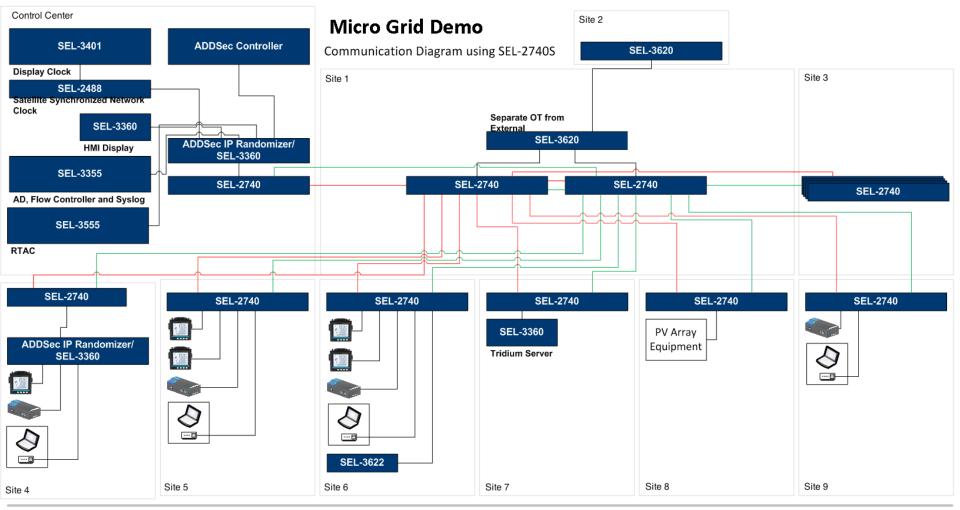
- Phase 1 has focused on developing the DD and MTD technologies in preparation for transition to practice
- Phase 2 shifts focus to applying technology to representative energy delivery system
- Initial laboratory tests performed with SEL, LLNL and SNL
- Representative system tests performed at Ft. Belvoir
- Capture metrics and effectiveness of MTD and DD strategies
- Publish results and continue outreach efforts to extend collaboration beyond existing partners


MTD Overview

- Current MTD demonstration uses OpenDaylight controller, Open vSwitch, HP 2920 Switch
- Overlay network introduced to disrupt reconnaissance phase of an attack
- Frequency of movement is user configurable


MTD Metrics

- Metrics captured for varying frequencies of movement of IP Addresses to measure operational impact of SDN integration
- Test environment includes 30 end devices and 3 network switches (Open vSwitch and HP 2920 switch with 600 flow updates/sec)
- Open vSwitch outperformed HP 2920 due to software flow table implementation Summary Statistics
 Throughput OVS-OVS Connection (1


DD Overview/Metrics

- DD algorithms compared against openly published algorithms
- Recall measures percent of correctly identified positive events
- AUC measures probability a randomly selected positive event is ranked higher than a randomly selected negative event
- Demonstration detects hitlist worm that triggers MTD as a defense strategy

Ft. Belvoir Demonstration

- Ft. Belvoir planned demonstration consists of 10 buildings
- Evaluation of DD and MTD in progress and demo planned FY18

