Warren Grice Oak Ridge National Lab

Practical Quantum Security for Grid Automation

Cybersecurity for Energy Delivery Systems Peer Review August 5-6, 2014

Summary: Practical Quantum Security for Grid Automation

• Objective

- Develop and demonstrate a novel quantum encryption technology that improves the versatility and accessibility of QKD.
- Incorporate that technology into commercial grid instrumentation.
- Schedule
 - Start Dec. 2012; End Oct. 2015
 - Key deliverables:
 - ✓ 08/23/2013: AQCESS technology demonstrated
 - ✓ 11/15/2013: Prototype design complete
 - 09/19/2014: Prototype testing complete
 - 09/02/2015: Field tests complete
 - New capability: Cost-effective and accessible quantum security for the grid

- Total Value of Award: \$ 2.9M
- % Funds expended to date: 57%
- Performer: Oak Ridge National Lab
- Partners: GE, ID Quantique

Security of cryptographic system is largely dependent on secrecy of encryption key

- Symmetric ciphers, such as Advanced Encryption Standard (AES), are commonly employed in modern cryptographic systems
 - Pre-shared encryption keys are required
 - NSA recommends AES with 256-bit keys for TOP SECRET information
- Asymmetric ciphers, such as RSA and Elliptic Curve Cryptography (ECC), can be employed to distributed encryption key
 - Security of asymmetric ciphers are based on unproven mathematical assumptions (insecure once a quantum computer is available)
 - Computationally intense (NIST key management guidelines suggest AES with a 256-bit key requires a 512-bit ECC key size or a 15,360-bit RSA key size)

Enhance modern cryptographic systems with quantum keys

- Quantum key distribution (QKD) is the only existing key distribution protocol with proven security
 - The security of QKD is based on fundamental laws in physics
 - Simple key generation algorithm
 - Speed of state of the art QKD system is above 1Mbits/second, much faster than the speed of asymmetric ciphers
- Quantum keys can be applied in any cryptographic protocols where a key is required!

Quantum key distribution

Advancing the State of the Art (SOA)

Classical Encryption

Key security is critical

- QKD is a proven technology, but has not been applied to grid security (unique needs; unique opportunities)
- QKD traditionally is limited to two parties
- This project
 - Makes QKD cost-effective and accessible to multiple parties
 - Integrates QKD into commercial grid instrumentation

Accessible QKD for Cost-Effective Secret Sharing (AQCESS)

Problem: QKD only supports two parties

• A separate QKD link is required for every pair of clients who need to share a key!

Accessible QKD for Cost-Effective Secret Sharing (AQCESS)

Project Team

Oak Ridge National Laboratory

- AQCESS technology
- System integration

GE Global Research

Power Systems instrumentation

ID Quantique

QKD systems and technology

Challenges to Success

- Challenge 1: Export control restrictions
 - Patience...
 - Re-distribution of responsibilities
- Challenge 2: Proof-of-Concept demonstration required some "un-engineering"
 - Lots of help from ID Quantique
- Challenge 3: Grid community ≠ QKD community
 - Emphasis on building a system that can be used with existing grid instrumentation
 - Ongoing dialog

Progress to Date

Major Accomplishments

- Modulation of QKD signal demonstrated 06/21/2013
- QKD with AQCESS node demonstrated 09/13/2013
- GE device (JungleMUX) selected for prototype integration 09/27/2013
- Prototype design complete 11/15/2013
- Hardware modifications for AQCESS module complete 04/18/2014
- JungleMUX authentication key uploaded via FTP connection 04/18/2014

Device Selection: JungleMUX

Selection Criteria

Power impacted; Information impacted; Service area

Selection Method

- 400+ GE products evaluated; top candidates reviewed by project team
- Selection: JungleMUX SONET Multiplexer
 - Handles large data volume with large power impact

QKD key will be used for access control

Collaboration/Technology Transfer

- Technical paper soon; two conference presentations
- Participation on IEC TC 57 WG 15 (SFB)
 - TC 57 is responsible for development of standards for information exchange for power systems and other related systems including Energy Management Systems, SCADA, distribution automation & teleprotection
 - WG 15 is focused upon Data & Communication Security (IEC 62351)
- Disseminating the Results to Users: JungleMUX Users Conference
- Other (contact W. Grice)

Next Steps for this Project

• FY14

Complete prototype testing

• FY15

- Build additional prototype modules
- Devise field test plan and carry out field tests
- Disseminate results