

Gen 3 CSP Technology Development

energy.gov/sunshot

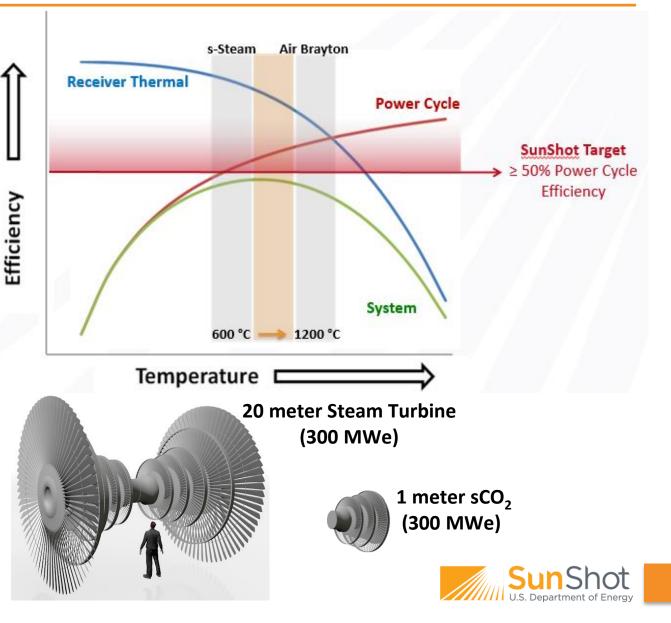
Mark Lausten, CSP Technology Manager

- Gen 3 CSP Technology Motivation
- Technology Pathways
- Background R&D
- Development Course Outcomes
- Cross-Cut Research and Analysis
- Capabilities Partnerships and Coordination
- Facilities and Integrated Validation

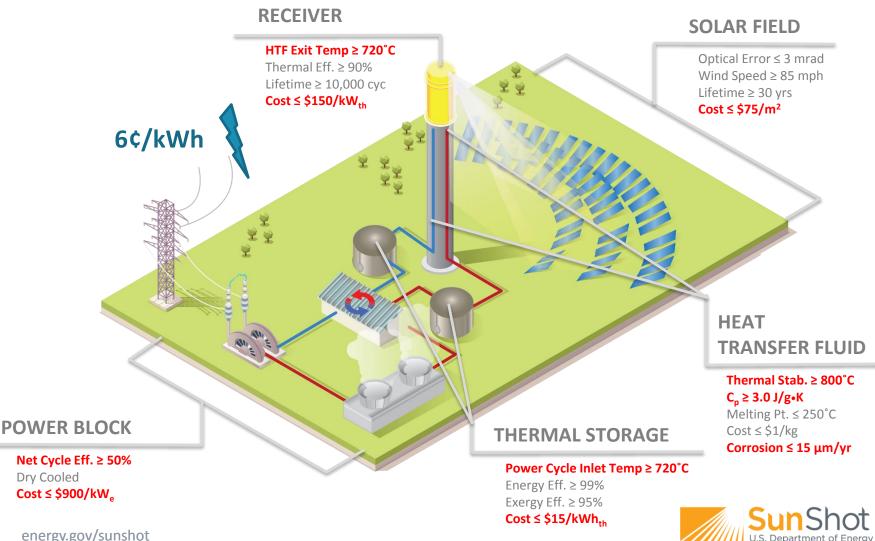
Motivation: CSP technology with Thermal Energy Storage has the potential to provide low cost solar energy on demand, improving grid stability, increasing the delivered value of other renewable power sources, and hedging against fuel price increases for conventional power plants

Challenge: Current CSP systems do not have a roadmap to reach the low costs necessary for significant market adoption. They are limited by the temperature range (currently 565°C) of materials that capture, store and transfer thermal energy. Significant cost reductions are possible by overcoming material barriers to operate at higher temperatures (> 700°C).

Objective: Develop new high temperature CSP technology and retire risk to enable larger-scale demonstrations by operating under representative conditions.


Third Generation CSP Power Cycle: 700°C +

Science Principles


- Carnot vs. radiation optimum: 650 – 750°C
- Power Cycle Isothermal heat input higher η
- CSP most suitable for Power Blocks <150 MW
- Increased efficiency critical to lower CSP costs

sCO₂ Power Cycles

- Can achieve η > 50% operating at >700°C
- Scale from 50-500 MW and can scale to 10 MW with modest η decrease
- Suitable for dry cooling

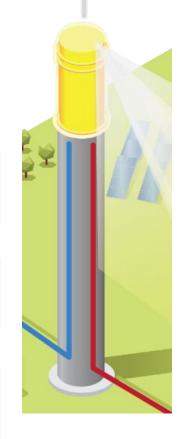
CSP Program Technical Targets

energy.gov/sunshot

5

CSP Program Technical Targets

RECEIVER


Gen 3 CSP Thermal Energy Sub-Systems

RECEIVER

HTF Exit Temp ≥ 720°C
Thermal Eff. ≥ 90%
Lifetime ≥ 10,000 cyc
$Cost \le $150/kW_{th}$

Some Key Challenges

Inert Gas	High temp / pressure stress / fatigue	Absorptivity and thermal loss	
Liquid	High Temp Stability / Low Freeze Point	Corrosion Allowance vs. Thin Tube Wall	
Solid Media	Challenging to get high efficiency	Media Flow Control or Heat Transfer	

Gen 3 CSP Thermal Energy Sub-Systems

	EAT RANSFER FLU	Thermal Stab. \geq 800°C $C_p \geq$ 3.0 J/g•K Melting Pt. \leq 250°C Cost \leq \$1/kg Corrosion \leq 15 µm/yr e Key Challenges	
Inert G	as Corrosion ris	sk Minimize pressure drop / Parasitic Load	
Liqui	d Potential ma identified bu not determin	ut best dominate	
Solid Medi			

Gen 3 CSP Thermal Energy Sub-Systems

	THERMAL STORAGEPower Cycle Inlet Temp ≥ 720°CEnergy Eff. ≥ 99%Exergy Eff. ≥ 95%Cost ≤ \$15/kWhSome Key Challenges		
Inert Gas	Indirect storage PCM, TCES, Sensible	Multi Heat Exchange Match Temp and Power with Cycle	
Liquid	Containment Material Cost	Corrosion allowance and high pressure working fluids	
Solid Media	Engineered Systems for reliability, cost and efficiency	Heat transfer solid particle to fluid	

Gen 3 CSP Systems Targets and Challenges

Collector Field		Receiver Cost < \$150/kW _{th} Thermal eff. > 90% Exit Temp > 720°C 10,000 cycle life	Material & Transport Cost < \$1/kg Operable range from 250°C to > 800°C	Thermal Storage Cost < \$15/kWh 99% energetic eff. 95% exergetic eff.	HTF to sc-CO ₂ Heat Exchanger	Super Critical CO ₂ Brayton Cycle
•Cost < \$75/m2 •Concentration Ratio > 50	Inert Gas	 High pressure fatigue challenges mitigated Absorptivity control and thermal loss management 	 Minimize pressure drop Corrosion risk retirement 	 Indirect storage required Cost includes fluid to storage thermal exchange 	•Cost includes fluid to storage thermal exchange	•Net thermal to electric efficiency > 50% •Power cycle
						system cost
 Operable in 35 mph winds Optical error <3.0 mrad 	Liquid	 Similarities to prior demonstrations Allowance for corrosive attack required 	 Potentially chloride salt, best material not yet determined Corrosion concerns dominate 	• Direct or indirect storage may be superior	•Challenging to simultaneously handle corrosive attack and high pressure working fluids	<\$900/kW _e •Dry cooled heat sink at 40°C ambient •Turbine inlet
						temperature near
•30 year lifetime	Solid Particle	•Most challenging to achieve high thermal efficiency	• High Temperature Material handling reliability and attrition	• Particles likely double as efficient sensible thermal storage	 Challenging heat transfer rate through solid particle Cost and efficiency concerns dominate 	720°C

Background R&D and Analysis

B&V Concept Design and Estimate Study

- Concepts based on 1990's Solar I and Solar II 10 MWe demo
- Evaluated the cost to demonstrate new high temperature systems considering Molten Salt and Solid Particle Pathways.
- Key Findings: Cost to build 10 MW demonstration >\$200 M
- Technology readiness of Sub-Systems premature for 10MW Integrated Tests

CSP System Integration Workshop April 2016:

- Over 100 CSP program R&D community, utilities and industrial manufacturers.
- Technology Breakouts: experts discussed state of the high temperature CSP

Gen 3 Roadmap:

- Multi-team effort to analyze known Technology pathways and key barriers
- Identify R&D priorities to advance Gen 3 to be prepped for 10 MW demo

Key Activities for Gen 3 Development

Gen3 CSP Systems Integration:

- Champions of Complete Gen 3 System Concepts Lead Development and Sub-System Integration
- Requires parallel development of individual components and sub-systems

<u>Components or sub-systems development:</u>

- Industrial Manufacturers or Sub-System Developers
- Requires Close Integrated Exchange of System Requirements and Component Capabilities

Integrated System Testing and Operation:

- Components and Sub-Systems Testing under **Representative Conditions**
- Scale and duration of testing to retire risk for adoption to a pilot demonstration

Goal: Integrated Operation at industrial relevant scales

Solar Energy Collection \rightarrow Storage \rightarrow Transfer to sCO2 at +700°C 250 bar

Cross Cut and Adjacent Activity

Materials Corrosion and Properties:

• Alloys, corrosion and fundamental heat transfer

Solar Field and sCO2 Power Cycle Integration and Analysis:

• Cross-cut Analysis to inform the entire field of development

<u>Near Term Adoption of New High Temperature Systems:</u>

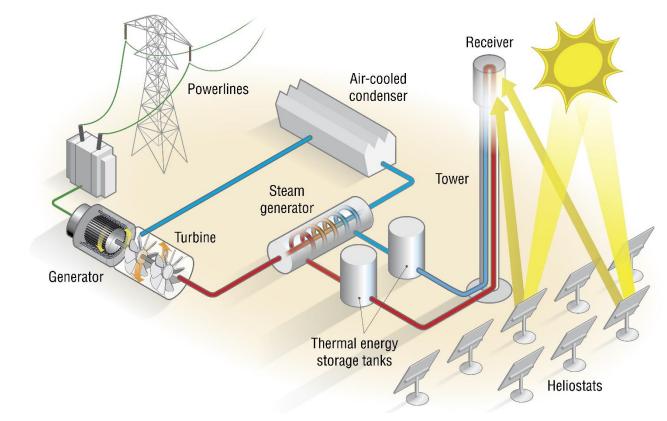
 Adoption of Materials and Concepts to Advance Systems Deployed in the next 5-10 years e.g. with steam turbines at lower temperatures

Manufacturing with High Temperature Materials:

• Joining, ASME qualification, additive manufacturing

Integration Engineering and Grid Integration Analysis:

- Looking ahead to the construction and Grid Integration of Gen 3
- Feedback into current development requirements

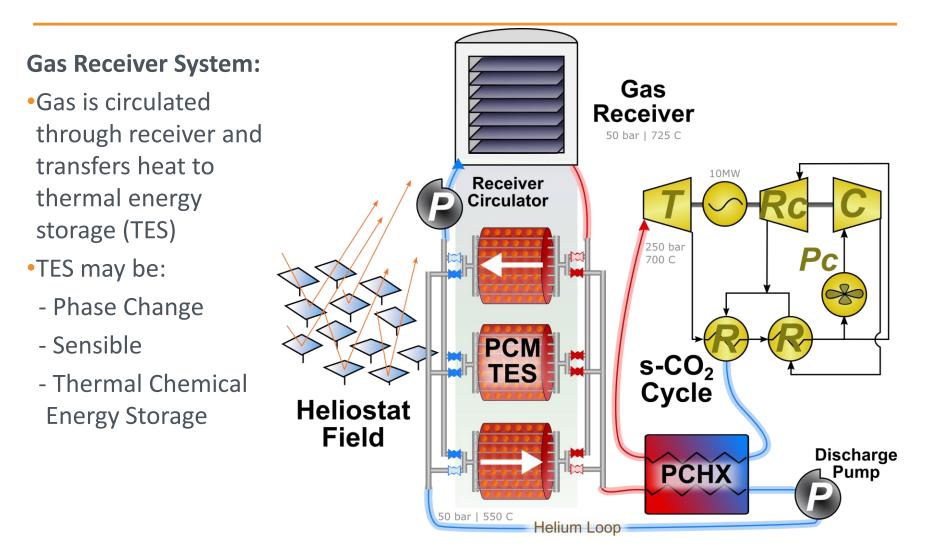


Thank you!

energy.gov/sunshot

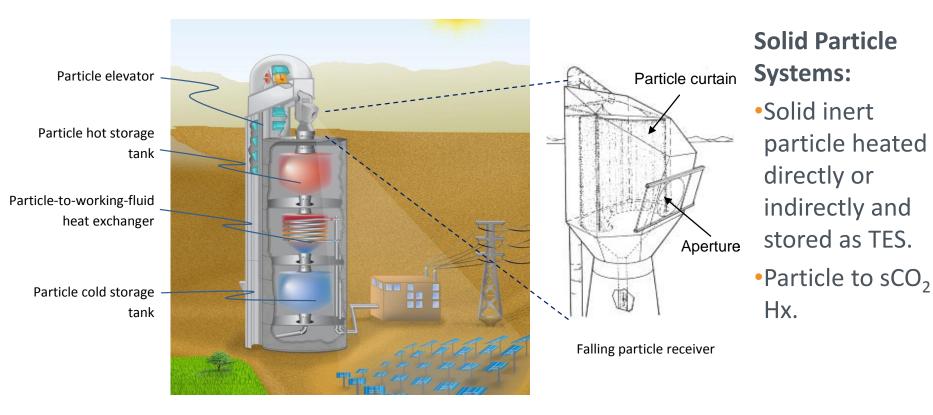
Mark Lausten, CSP Technology Manager

Liquid System Concept


Liquid Systems:

•One Fluid for receiver and thermal energy storage (TES).

•Sensible heat TES heats sCO₂



Inert Gas Receiver Concept

Falling Particle System Concept

