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SunShot Metrics and Subsystem.lntegration

CSP Subsystem Interface Coupling | RFCE'VER

A: Solar Field and Receiver "'TTFhE;(r';;eg%P':ggf C

B: Recei_ver and Heat Transfer Fluid System Lifetime = 10,000 cyc"l os

C: Receiver and Energy Storage Cost < $150/kW,, SOLAR FIELD
D: Power Block to Receiver

Optical Error = 3 mrad
E: Power Block to Energy Storage

Wind Speed = 85 mph
Lifetime 2 30 yrs
Cost < $75/m?

6¢/KWh

HEAT TRANSFER FLUID
Thermal Stab. 2 800°C

C,23.0J/igK
Melting Pt. =250°C
POWER BLOCK ‘ Cost = $1/kg
Net Cycle Eff. = 50% THERMAL STORAGE
Dry Cooled Power Cycle Inlet Temp. 2 720°C
Cost < $900/kW, Exergetic Eff. 2 95%
Cost = $15/kWhy,

P, SunShot

| US. Department of Energy
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CSP Gen3 System Integration

* Receiver and heliostat performance definitions and
design interactions

* STEP objectives and sCO, cycle design

* sCO, recompression Brayton cycle characteristics
o Design point considerations
o Impact of ambient temperature
o Impact of part-load operation
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Receiver Performance Metrics

Receiver efficiency is defined as the incident thermal flux from the solar field,
less reflective, radiative, and convective thermal losses, divided by incident
thermal flux:

QSF - Qrefl _ Qconv - Qrad

Nth = > 90%
Osr
Where:
Qg = thermal flux from the solar field incident on
the receiver aperture

Qe = thermal losses from reflection to ambient
Qeony = thermal losses from convection to ambient Q.

x AreCT Jm'cp .
Qg = thermal losses from the radiation to ambient

X ApecT*
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Heliostat Performance Metrics

SunShot Heliostat Goals *
Cost < S75/m?
Optical error (calm) < 3.0 mrad

Optical error (windy) | <4.0 mrad
* DOE-FOA-0001186 “APOLLO” 2015

SunShot optical error metrics are for total
reflected image area, 0¢p¢qr:

— 2 2 2 2 2 2

Where:

O¢l Elevation pointing error
Ouz Azimuthal pointing error
Os x Surface slope error in X
Os.y Surface slope errorinY
Op x Reflected beam error in X
Ory Reflected beam errorinY

When modeling solar field/receiver interactions it is necessary to incorporate
relevant receiver and heliostat metrics.
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Heliostat/Receiver Interaction.Example

Fixed Receiver Height Parametric

* Assumptions:

o Receiver height: 10 m
o Peak flux: 2 MW/m?
o Large, accurate heliostats (SAM

Optimal design for 10-m Receiver Height with
Tower Height and Receiver Diameter optimized

¢ Relative LCOE e Image intercept efficiency (%)

default)
1.045 94
_ 1.035 -
o Vary thermal power input 1.030 4 - 90
o Optimize receiver diameter and i'gzz I - 88
tower height for each power 1015 - - 86
H 1.010 - L
e Observation: 010 84
1.005 - o
o Fixed receiver design attributes 1.000 -
(such as receiver height) can 0-995 ' ' ' ' ' 80
150 250 350 450 550 650 750

influence overall system sizing due Receiver Thermal Power (MW1)
to optical performance effects
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Heliostat/Receiver Interaction.Example

Flux Uniformity Parametric

Assumptions:

— Flat heliostats, 6 m x 4 m, two facets, canted
— Cylindrical receiver, 500 MW,

Method:

— Vary allowable heliostat image-edge offset
— Optimize receiver height, diameter, and tower height

— Measure vertical flux uniformity

Observation: The ability to achieve flux uniformity on the receiver comes
at the expense of image intercept efficiency

100%

80%

60% -

40% A

20% -

¢ Uniformity
® Image intercept efficiency

0% .
0 1

2 3

Image edge offset factor (std. dev. of image size)
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92
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Offset factor

Receiver flux profiles;
horizontal axis is

circumferential dimension

0.5
1.0

15 °

™
o
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sCO, Cycle Development under. STEP

DOE’s “STEP” project will demonstrate
a 10 MW, recompression cycle

Heater—. ;

* |In negotiation with winning proposal team
of GTI/SwRI/GE o

* Operational in 2020 EEPEEING

Turbine 2

Recuperator 2— "

Cooler— ]

Supercritical P,
Transformational Main Compressor e

Electric Recompressor

Power , Image: Southwest Research Institute
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STEP Test Facility Attributes.and.Objectives

* 10 MW, ,.; SCO, recompression Brayton cycle
* Turbine inlet temperature of 700°C

 Demonstrate pathway towards an overall power cycle
efficiency of 50% or greater

* Reconfigurable and can monitor and characterize primary
components or subsystems (turbomachinery, heat
exchangers, recuperators, bearings, seals, etc.)

 Demonstrate steady state, transient load following, and
limited endurance operation.

e Capable of test campaigns to assess critical component
degradation mechanisms to assess component life and cost
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sCO, Recompression Cycle

Design-point values from Black & Veatch study

T, =22.5°C
Precooler
715°C 35°C
249 bar , 81 bar 9
Turbine
l Generator
from Hot Storage
>720°C
; 574°C 217°C 86°C 95°C
24 MW Primary 85 bar 249 bar 256 bar 82 bar
HX
518°C
253 bar 267°C
to Cold Storage 84 bar
~540°C 33 MW 19 MW
Recuperators

Note: SunShot CSP plants are assumed to be dry cooled, so a higher design-point ambient temperature is likely.
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Effects of Ambient Temperature

These changes affect the solar HTF 2eol ]
temperature in the primary heat aa0]- ]
exchanger, which will propagate back to 300 ]
receiver operations. %0 50

11

10+ R
Cycle power output varies in sync with §
thermal efficiency. Equipment limitations 21 ]

may constrain over-design operation.

(Actual operation strategy will seek to optimize

0.52
. . 0.51| n ]
revenue, which will depend on many factors, 0301 1
including market and dispatch signals from the a8 R )
. 0.46 | R i
grid.) 045t 1
10 15 20 25 30 35 40 45 50

12
110 = |
As T, . rises, compressor-inlet pressure is of — ]
increased to compensate. T = _ _ | _ L
EE’lU 1I5 2I0 2I5 3I0 3I5 4IU 4I5 50

Ambient Temperature (C)
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Ambient Temperature and. Cycle.Control

400
HTF storage return 390 i
g 280 HTF Temperatures at
temperature a0 L Naoust | the Primary HX
maintained 360 - i
wol __—— cOjn _
340 | 1 1 | | 1
820 T | | |
, 800 | Q [MW] (IHX) 1
Heat transfer in 780 - | Primary HX Power
Primary HX ;ﬂ i i
maintained 720 - -
700 |- _
680 _
660 1 | | | |
2.0
1.0
Speed control 0.0 |- 1 Change in Cycle
applied to main ;g - - Efficiency
compressoras T, 30 -
changes podi i
6.0 ! | | | | |

Ty, 96°C 38°C 40°C 42°C 44°C 46°C 48°C
Main compressor inlet temperature (T,,)
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Part-Load Operation

Optimizing for efficiency keeps the solar _\
HTF temperature near it’s design point. ]
350 | | | | |
0.5 0.6 0.7 0.8 0.9 1.0 11
052 | Cyclle Gross Therlmal Efficiencly[-] |
030r Soiiee=sw==ooCTIZIZZZIZZZooon :
0.48 ) S ; .
0.46 . : i
0.44f e ; .
Under these conditions, one will normally 0.40 i i i . i
. . . . 0.5 0.6 0.7 0.8 0.9 1.0 11
optimize to cycle efficiency (dashed lines) Cycle Power Output [MWe]
rather than power output (solid lines) — H— f ]
e T
0.|6 O.I? C-.IS O.IQ 1.|0 11
24 T
22_ ~ = = — |
For part-load operation, heat flow to the P ——————
primary HX is reduced. O asswEsEEEITTTOT
Off-Design Ambient Temperature 15 F==" '-#g; . | . . . |
— 250C — 400C 0.5 0.6 0.7 0.8 0.9 1.0 1.1
— 300C  — 35.0C Normalized HTF Mass Flow Rate (-)
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* Receiver and solar field should be modeled together to
ensure optimal designs.

o SolarPILOT can perform such analyses
* CSP Gen3 designs must be compatible with sCO, power cycle
development under STEP
o Variants, e.g., partial-cooling cycle, may be more favorable for CSP
e Off-design conditions will occur for changing ambient
temperature and part-load
o These changes will impact solar HTF mass flow and temperature in the

primary HX

* Cycle operating strategy can maximize power output or cycle
efficiency as necessary to optimize revenue.

o These modes result in different demands on the thermal storage system
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Thank you!
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