CSP Gen 3 Roadmap

Technology Pathway Molten Salt

February 01, 2017

Dr. Judith Gomez-Vidal, NREL Dr. Alan Kruizenga, SNL

Technology Overview – Molten Salt Pathway

State-of-the-Art Molten Salt Technology

- Heat transfer (HTF) and thermal storage (TES) fluid = Solar Salt (Na-K/NO₃)
- Hot Tank = 585°C**;
- Cold Tank = 290°C;
- Power Block = Steam Rankine;
- Receiver = external.

CSP Gen 3 Roadmap

**Possibility for higher temperatures if ullage gas chemistry is changed

Hypothetical Advanced-Salt System

SunShot goal (integrated systems for sCO₂ power cycle):

- Nitrate salts decompose above ~600-620°C
- Chlorides and carbonates are good candidates
 CSP Gen 3 Roadmap

Molten Salt Technology Gaps

- 1. Salt Chemistry
- 2. Material Selection/Compatibility
- 3. TES Tank Design & Cost
- 4. Salt Receiver
- 5. Pumps, Valves, and Piping
- 6. Salt-to-sCO₂ Heat Exchanger
- 7. Heat Trace and Sensors

• Validated, and published thermophysical properties are required for system design.

- Validated, and published thermophysical properties are required for system design.
- Stable to at least 750°C (short residence time at 800°C).

- Validated, and published thermophysical properties are required for system design.
- Stable to at least 750°C (short residence time at 800°C).
- Melting/freezing volume change and vapor pressure must be considered.

- Validated, and published thermophysical properties are required for system design.
- Stable to at least 750°C (short residence time at 800°C).
- Melting/freezing volume change and vapor pressure must be considered.
- Corrosion performance and mitigation is needed.

- Validated, and published thermophysical properties are required for system design.
- Stable to at least 750°C (short residence time at 800°C).
- Melting/freezing volume change and vapor pressure must be considered.
- Corrosion performance and mitigation is needed.
- System needs to be reliable, simple to operate and inexpensive → corrosion monitoring is key and plant operators need to be able to handle any situation.

Candidate MS – HTFs (SunShot goal = 15 \$/kWh_{th})

Salt Mixture	Melting Point (°C)	Heat Capacity , J/g-K	Density, kg/L	Tank Size*	Δ Volume on Melting	Notes**	Price (\$/kWh _t) with ΔT = 200 K
NaNO ₃ KNO ₃ (baseline)	220	1.5	1.7	1.26	+4.6%		10
MgCl ₂ KCl	426	1.15	1.66	1.69	KCI: +22.3% MgCl ₂ : +30.5%	BP _(ZnCl2) = 732°C	5
ZnCl ₂ NaCl KCl	204	0.81	2.4	1.66	NaCl/KCI: +14.8% NaCl: +26.1%	BP _(MgCl2) = 1412°C	18
Na_2CO_3 K_2CO_3 Li_2CO_3	398	1.61	2.0	1	+3.6%	$EP_{(747^{\circ}C)} = 0.014 \text{ atm}$ $EP_{(827^{\circ}C)} = 0.041 \text{ atm}$ $EP_{(947^{\circ}C)} = 0.151 \text{ atm}$	28

* normalized to smallest tank for a given energy

** BP: boiling point temperature,

EP: equilibrium pressure at a given temperature of CO_2

Salt	Notable Advantages				
Zn-based	 Lowest melting point Corrosion mitigation can be achieved				
chloride	(exclusion of oxygen and water)				
Mg-based	 Lowest cost per kg Corrosion mitigation can be achieved				
chloride	(exclusion of oxygen and water)				
Ternary carbonate eutectic	 High heat capacity and density leads to smallest tank volume No required purification/pre-melting. Inherently compatible with CO₂ Vast experience from molten-carbonate fuel cells operating at ~650°C. 				

Salt	Notable Advantages	Notable Disadvantages
Zn-based chloride	 Lowest melting point Corrosion mitigation can be achieved (exclusion of oxygen and water) 	 Measureable vapor pressure Very corrosive in presence of oxygen/water Controlled purification/pre-melting required Lowest heat capacity
Mg-based chloride	 Lowest cost per kg Corrosion mitigation can be achieved (exclusion of oxygen and water) 	 Very corrosive in presence of oxygen/water Controlled purification/pre-melting required Intergranular corrosion if Mg concentration too low Highest melting point
Ternary carbonate eutectic	 High heat capacity and density leads to smallest tank volume No required purification/pre-melting. Inherently compatible with CO₂ Vast experience from molten-carbonate fuel cells operating at ~650°C. 	 Highest cost per kg Lithium is a critical metal (market volatility) High melting point

• Thermophysical properties.

- Thermophysical properties.
- Optimize salt composition (cost and properties)
 - Low-lithium with additives or ternary (Mg, K, Na)-Cl.

- Thermophysical properties.
- Optimize salt composition (cost and properties)
 - Low-lithium with additives or ternary (Mg, K, Na)-Cl.
- Demonstrate freeze recovery at (~400°C),
 - It may eliminate zinc-chloride salts.
 - Volume change to avoid deformation or rupture.

- Thermophysical properties.
- Optimize salt composition (cost and properties)
 - Low-lithium with additives or ternary (Mg, K, Na)-Cl.
- Demonstrate freeze recovery at (~400°C),
 - It may eliminate zinc-chloride salts.
 - Volume change to avoid deformation or rupture.
- Total costs must include purification/pre-melting component, ullage gas, corrosion mitigation control, etc.

- Thermophysical properties.
- Optimize salt composition (cost and properties)
 - Low-lithium with additives or ternary (Mg, K, Na)-Cl.
- Demonstrate freeze recovery at (~400°C),
 - It may eliminate zinc-chloride salts.
 - Volume change to avoid deformation or rupture.
- Total costs must include purification/pre-melting component, ullage gas, corrosion mitigation control, etc.
- Specify baseline melting/purification protocols.

- Thermophysical properties.
- Optimize salt composition (cost and properties)
 - Low-lithium with additives or ternary (Mg, K, Na)-Cl.
- Demonstrate freeze recovery at (~400°C),
 - It may eliminate zinc-chloride salts.
 - Volume change to avoid deformation or rupture.
- Total costs must include purification/pre-melting component, ullage gas, corrosion mitigation control, etc.
- Specify baseline melting/purification protocols.
- Determine compatibility with CO₂.

• Salt chemistry cross cuts entire system and is critical for success.

- Salt chemistry cross cuts entire system and is critical for success.
- Design of components is tied to accurate and reliable salt's thermophysical and corrosion properties.

- Salt chemistry cross cuts entire system and is critical for success.
- Design of components is tied to accurate and reliable salt's thermophysical and corrosion properties.
- No pathway exists without addressing this gap.

- Chlorides are corrosive in the presence of water and air:
 - Ullage gas must be controlled,

CSP Gen 3 Roadmap

23

- Chlorides are corrosive in the presence of water and air:
 - Ullage gas must be controlled,
 - Corrosion mitigation with redox control or active metal,
 - Needs chemistry monitoring,
 - Could it reduce refractory bricks?

- Chlorides are corrosive in the presence of water and air:
 - Ullage gas must be controlled,
 - Corrosion mitigation with redox control or active metal,
 - Needs chemistry monitoring,
 - Could it reduce refractory bricks?
 - Leaks could corrode piping and other components,

- Chlorides are corrosive in the presence of water and air:
 - Ullage gas must be controlled,
 - Corrosion mitigation with redox control or active metal,
 - Needs chemistry monitoring,
 - Could it reduce refractory bricks?
 - Leaks could corrode piping and other components,
 - Corrosion in vapor is worse than in liquid.

- Chlorides are corrosive in the presence of water and air:
 - Ullage gas must be controlled,
 - Corrosion mitigation with redox control or active metal,
 - Needs chemistry monitoring,
 - Could it reduce refractory bricks?
 - Leaks could corrode piping and other components,
 - Corrosion in vapor is worse than in liquid.
- Carbonates can use 300-series alloys up to 650°C.

- Chlorides are corrosive in the presence of water and air:
 - Ullage gas must be controlled,
 - Corrosion mitigation with redox control or active metal,
 - Needs chemistry monitoring,
 - Could it reduce refractory bricks?
 - Leaks could corrode piping and other components,
 - Corrosion in vapor is worse than in liquid.
- Carbonates can use 300-series alloys up to 650°C.
- Allowable impurities need to be determined.

Technology Gap – Material Selection/Compatibility Recommended R&D Activities

• Alloys must be code qualified.

Technology Gap – Material Selection/Compatibility Recommended R&D Activities

- Alloys must be code qualified.
- Determine allowable concentrations of O_2/H_2O in chloride salts based on allowable corrosion.

- Alloys must be code qualified.
- Determine allowable concentrations of O_2/H_2O in chloride salts based on allowable corrosion.
- Develop *in-situ* chemistry monitoring system for maintenance purpose in the plant.

- Alloys must be code qualified.
- Determine allowable concentrations of O_2/H_2O in chloride salts based on allowable corrosion.
- Develop *in-situ* chemistry monitoring system for maintenance purpose in the plant.
- Prove methods for chloride purification at large scales.

- Alloys must be code qualified.
- Determine allowable concentrations of O_2/H_2O in chloride salts based on allowable corrosion.
- Develop *in-situ* chemistry monitoring system for maintenance purpose in the plant.
- Prove methods for chloride purification at large scales.
- Generate corrosion data under CSP relevant conditions.

- Alloys must be code qualified.
- Determine allowable concentrations of O_2/H_2O in chloride salts based on allowable corrosion.
- Develop *in-situ* chemistry monitoring system for maintenance purpose in the plant.
- Prove methods for chloride purification at large scales.
- Generate corrosion data under CSP relevant conditions.
- Characterize corrosion mitigation techniques that allow use of less-expensive materials.

- Alloys must be code qualified.
- Determine allowable concentrations of O_2/H_2O in chloride salts based on allowable corrosion.
- Develop *in-situ* chemistry monitoring system for maintenance purpose in the plant.
- Prove methods for chloride purification at large scales.
- Generate corrosion data under CSP relevant conditions.
- Characterize corrosion mitigation techniques that allow use of less-expensive materials.
- Develop rapid leak-detection and control.

• Containment material is a major system cost driver.

- Containment material is a major system cost driver.
- Components and overall system design require proven highly reliable materials for design and economic considerations.

- Containment material is a major system cost driver.
- Components and overall system design require proven highly reliable materials for design and economic considerations.
- Material compatibility will push forward the technology.

Technology Gap – Thermal Energy Storage Current Status

- Cost analysis is an extrapolation from two-tank TES,
 - Solar salt at 585°C \rightarrow Mg-K/Cl and Na-K-Li/CO₃ at 720°C.

Technology Gap – Thermal Energy Storage Current Status

40

- Cost analysis is an extrapolation from two-tank TES,
 - Solar salt at 585°C \rightarrow Mg-K/Cl and Na-K-Li/CO₃ at 720°C.

Technology Gap – Thermal Energy Storage Current Status

- Cost analysis is an extrapolation from two-tank TES,
 - Solar salt at 585°C \rightarrow Mg-K/Cl and Na-K-Li/CO₃ at 720°C.

Minimize Tank Cost through Design Changes

Minimize Tank Cost through Design Changes

Externally insulated tank at Solar Two

- Assess performance of refractory brick,
 - Chemical compatibility.
 - Heat transfer (insulation).
 - Open porosity.

CSP Gen 3 Roadmap

Jonemann 2013

• Determine if costs can be reduced by use of internally insulated tanks.

- Determine if costs can be reduced by use of internally insulated tanks.
- Develop acceptable means for cover gas implementation (dependent on salt).

- Determine if costs can be reduced by use of internally insulated tanks.
- Develop acceptable means for cover gas implementation (dependent on salt).
- Explore the potential of adapting designs from current industries for the salt tanks, especially the hot salt tank.

- Determine if costs can be reduced by use of internally insulated tanks.
- Develop acceptable means for cover gas implementation (dependent on salt).
- Explore the potential of adapting designs from current industries for the salt tanks, especially the hot salt tank.
- Evaluate tank foundation cooling methods for higher temperatures.

• Tank cost, using traditional design, is too expensive with high strength alloys.

- Tank cost, using traditional design, is too expensive with high strength alloys.
- Failure to identify design options that include low cost materials is an economic risk.

- Tank cost, using traditional design, is too expensive with high strength alloys.
- Failure to identify design options that include low cost materials is an economic risk.
- Demonstration could be done using non-optimized designs/materials of higher cost.

• External receivers are the current standard.

- External receivers are the current standard.
- Established methods have demonstrated freeze recovery in receivers without damage.

- External receivers are the current standard.
- Established methods have demonstrated freeze recovery in receivers without damage.
- Receiver configurations for high-temperature salts are expected to be extrapolations from current technology.

- External receivers are the current standard.
- Established methods have demonstrated freeze recovery in receivers without damage.
- Receiver configurations for high-temperature salts are expected to be extrapolations from current technology.
- Estimated costs for the tower and receiver combined are about \$180/kW_{th} (SunShot is \$150/kW_{th})

Technology Gap – Salt Solar Receiver External vs. Cavity Design

• Current MS Receivers with surround field are 56% efficient (93% thermal)

Technology Gap – Salt Solar Receiver External vs. Cavity Design

 Current MS Receivers with surround field are 56% efficient (93% thermal)

<u>Preliminary Calculations at High</u> <u>Temperatures:</u>

- North Cavity Receivers (and field) are 57% total efficiency, while External are 54%.
- Efficiency is primarily driven by optical efficiencies.

• Determine optimum system size and type.

- Determine optimum system size and type.
- Assess optical performance at these levels.

- Determine optimum system size and type.
- Assess optical performance at these levels.
- Assess adequacy of freeze recovery methods for high melting points.

- Determine optimum system size and type.
- Assess optical performance at these levels.
- Assess adequacy of freeze recovery methods for high melting points.
- Assess material susceptibility to stress corrosion cracking under operational conditions (observed at Solar Two).

- Determine optimum system size and type.
- Assess optical performance at these levels.
- Assess adequacy of freeze recovery methods for high melting points.
- Assess material susceptibility to stress corrosion cracking under operational conditions (observed at Solar Two).
- Determine pumping losses associated with internal fins for augmented heat transfer.

- Determine optimum system size and type.
- Assess optical performance at these levels.
- Assess adequacy of freeze recovery methods for high melting points.
- Assess material susceptibility to stress corrosion cracking under operational conditions (observed at Solar Two).
- Determine pumping losses associated with internal fins for augmented heat transfer.
- Determine feasibility of *in-situ* heat treatment on finished components (welded) for age-strengthen alloys

 Determine residence time required at ~800°C to cause decomposition of salts.

- Determine residence time required at ~800°C to cause decomposition of salts.
- Prove fill and drain procedure with cover gas. Develop system to maintain cover gas during drain back for off-sun idle operation.

- Determine residence time required at ~800°C to cause decomposition of salts.
- Prove fill and drain procedure with cover gas. Develop system to maintain cover gas during drain back for off-sun idle operation.
- Heliostat real-time tracking or real-time flux profile evaluation and control needs to be developed. Increased optical performance may not be achievable without closed-loop tracking.

- Determine residence time required at ~800°C to cause decomposition of salts.
- Prove fill and drain procedure with cover gas. Develop system to maintain cover gas during drain back for off-sun idle operation.
- Heliostat real-time tracking or real-time flux profile evaluation and control needs to be developed. Increased optical performance may not be achievable without closed-loop tracking.
- Determine the impact on thermal performance of thicker receiver pipes, required due to reduced materials strength at the higher operating temperatures.

Technology Gap – Salt Solar Receiver Impact

- Receiver development is largely understood and is designated as an engineering effort.

Technology Gap – Salt Solar Receiver Impact

- Receiver development is largely understood and is designated as an engineering effort.
- Failure to address specified receiver would result in lower overall efficiencies and ultimately raise costs of the MS technology.

Technology Gap – Salt Solar Receiver Impact

- Receiver development is largely understood and is designated as an engineering effort.
- Failure to address specified receiver would result in lower overall efficiencies and ultimately raise costs of the MS technology.
- SunShot performance goals requires substantial control of thermal losses, which will require cavities, hightemperature selective absorbers, or increased flux capabilities.

• Determine if mechanical properties degradation occur because of high temperatures and thermal cycling.

- Determine if mechanical properties degradation occur because of high temperatures and thermal cycling.
- Implement piping on larger systems to prove in technology in a plant like setting.

- Determine if mechanical properties degradation occur because of high temperatures and thermal cycling.
- Implement piping on larger systems to prove in technology in a plant like setting.
- Determine the feasibility of using ceramic lined pipe or *in-situ* surface treatments for internal walls.

• Low-cost piping drives the economic viability of system.

Crescent Dunes Solar Reserve

- Low-cost piping drives the economic viability of system.
- Failure to address a cost effective solution for piping would result in MS technology not being economically feasible.

Crescent Dunes Solar Reserve

• Cantilevered pump designs used in Solar Two.

- Cantilevered pump designs used in Solar Two.
- Current industry standard uses long-shafted pumps,
 - Nitrate salts adequately lubricate bearings.

- Cantilevered pump designs used in Solar Two.
- Current industry standard uses long-shafted pumps,
 - Nitrate salts adequately lubricate bearings.
- Pumps will be a vertical single- or multi-stage sump type, mounted to the roof of the MS tanks (B&V report).

- Cantilevered pump designs used in Solar Two.
- Current industry standard uses long-shafted pumps,
 - Nitrate salts adequately lubricate bearings.
- Pumps will be a vertical single- or multi-stage sump type, mounted to the roof of the MS tanks (B&V report).
- Design and service for MS pumps above 550°C is relatively limited. At higher temperatures up to 720°C there is no available design or service experience.

- Lubricity of proposed salts is unclear,
 - Cold-tank pumps require multi-stages for lifting the salt to the top of the tower and require bearings.

salt lubricated pump*

- Lubricity of proposed salts is unclear,
 - Cold-tank pumps require multi-stages for lifting the salt to the top of the tower and require bearings.
- Materials, design, and maintenance are all unknowns.

salt lubricated pump*

salt lubricated pump*

- Lubricity of proposed salts is unclear,
 - Cold-tank pumps require multi-stages for lifting the salt to the top of the tower and require bearings.
- Materials, design, and maintenance are all unknowns.
- Tank structure at temperature may be insufficient to support the large pumps.

salt lubricated pump*

CSP Gen 3 Roadmap

- Lubricity of proposed salts is unclear,
 - Cold-tank pumps require multi-stages for lifting the salt to the top of the tower and require bearings.
- Materials, design, and maintenance are all unknowns.
- Tank structure at temperature may be insufficient to support the large pumps.
- External pump and sump may be considered to eliminate long shaft pump for pilot plant.

• Determine pump designs for the cold/hot tanks.

- Determine pump designs for the cold/hot tanks.
- Perform flow testing of pumps at temperature, with salt.

- Determine pump designs for the cold/hot tanks.
- Perform flow testing of pumps at temperature, with salt.
- Select and test materials for bearings/journals.

- Determine pump designs for the cold/hot tanks.
- Perform flow testing of pumps at temperature, with salt.
- Select and test materials for bearings/journals.
- Lubricity of salt should be determined,
 - Concerns around chlorides.

- Determine pump designs for the cold/hot tanks.
- Perform flow testing of pumps at temperature, with salt.
- Select and test materials for bearings/journals.
- Lubricity of salt should be determined,
 - Concerns around chlorides.
- Larger systems-level testing will be required to test pumps under plant-like conditions.

- Pump designs are assumed to be able to meet requirements specified in plant designs,
 - Pump reliability is key to the entire system

- Pump designs are assumed to be able to meet requirements specified in plant designs,
 - Pump reliability is key to the entire system
- Significant technical risks for any commercial application if short-term pump reliability in a pilot plant is not accomplished.

A salt-to-sCO₂ heat exchanger does not exist. Three concepts were suggested (vessel shell and tube; serpentine shell and tube; printed circuit)

A salt-to-sCO₂ heat exchanger does not exist. Three concepts were suggested (vessel shell and tube; serpentine shell and tube; printed circuit)

Recommended R&D Activities

- Identify promising designs.
- Develop strategies pertaining to start up/shut down.
- Assess CO₂/chloride salt compatibility.
- Demonstrate performance between sCO₂ and salt.

Technology Gap – Salt-to-sCO₂ Heat Exchanger Impact

- Advanced heat-exchanger technology is important from both a performance and economic viability standpoint for the technology.

- Advanced heat-exchanger technology is important from both a performance and economic viability standpoint for the technology.
- Shell and tube is a leading technology, but advanced heat exchange concepts could be considered to improve performance and cost.

- Bellows valves were recommended to provide hermetic sealing but packed valves are preferred if a packing material is suitable:
 - Potentially less expensive and easier to maintain.
 - Rupture of bellows if actuated when salt frozen.

The

Current Status

- Bellows valves were recommended to provide hermetic sealing but packed valves are preferred if a packing material is suitable:
 - Potentially less expensive and easier to maintain.
 - Rupture of bellows if actuated when salt frozen.

Impact

- Valve designs will be an important consideration for reliability, performance, and O&M.
- If valve reliability is not accomplished it will create significant technical risks for commercial application.

Technology Gap – Valves Recommended R&D Activities

- Determine suitable valve designs,
 - Early on collaboration with vendors.

下高

- Determine suitable valve designs,
 - Early on collaboration with vendors.
- Different types of valve to be explored (i.e. magnetic).

Tâ

- Determine suitable valve designs,
 - Early on collaboration with vendors.
- Different types of valve to be explored (i.e. magnetic).
- Perform 'bench-scale' testing at temperature with salt.

- Determine suitable valve designs,
 - Early on collaboration with vendors.
- Different types of valve to be explored (i.e. magnetic).
- Perform 'bench-scale' testing at temperature with salt.
- Larger systems will be required to test valves under plant-like conditions.

- Improper heat trace damages valves and pipes.
- Detailed insulation procedures are available.*

- Improper heat trace damages valves and pipes.
- Detailed insulation procedures are available.*

Recommended R&D Activities

- Determine best heat-trace and insulation designs.
- Radiation barriers alternating with layers of insulation might be considered.
- Test selected system with salt under test field-like conditions to determine lifetime, and maintainability.

Technology Gap – Heat Trace and Insulation Impact

 Heat-trace and insulation solutions are assumed to exist with appropriate design and selection of materials.

- Heat-trace and insulation solutions are assumed to exist with appropriate design and selection of materials.
- Heat trace a significant parasitic loss in current nitrate systems and must be well designed for higher temperature conditions.

- Heat-trace and insulation solutions are assumed to exist with appropriate design and selection of materials.
- Heat trace a significant parasitic loss in current nitrate systems and must be well designed for higher temperature conditions.
- Failures in heat trace could be disastrous for demonstration purposes,
 - Could cause unplanned outages, irrecoverable component damage, and freezing problems.

Recommended R&D Activities

- Determine best designs for applications.
- Perform no-flow testing of sensor at temperature (robustness testing).
- Implement sensor on systems to prove technology.

Recommended R&D Activities

- Determine best designs for applications.
- Perform no-flow testing of sensor at temperature (robustness testing).
- Implement sensor on systems to prove technology.

Impact

- Robust sensors reduce pilot plant risk with data to inform operation and control methodologies.
- Sensors for the high-temperature portions of the system do not currently exist.

Molten Salt Receiver Pathway - Summary

- MS technology represents the most familiar path toward the Gen3 goals, following requirements are key:
 - Selection of salt, and cost effective materials.
 - Corrosion understanding for component designs.
 - Design challenges are expected.
 - Redesign of hot tank to achieve TES cost metrics.

Molten Salt Receiver Pathway - Summary

- MS technology represents the most familiar path toward the Gen3 goals, following requirements are key:
 - Selection of salt, and cost effective materials.
 - Corrosion understanding for component designs.
 - Design challenges are expected.
 - Redesign of hot tank to achieve TES cost metrics.
- Critical subsystems are viewed primarily as engineering tasks.
 - Meeting acceptable cost and reliability will be the primary challenge to be overcome.
CSP Gen 3 Roadmap

Technology Pathway Molten Salt

CSP Gen 3 Roadmap

Technology Pathway Molten Salt

