FoxGuard Solutions

The Patch and Update Management Program for Energy Delivery Systems

Cybersecurity for Energy Delivery Systems Peer Review December 7-9, 2016

Patch and Update Management Program

Objective

 Simplify Patch Management of Energy Delivery Systems

Schedule

- Project Start: October 2014
 - Phase I Plan, Prep & Research (Completed)
 - Phase II Design & Develop (In Process)
 - Phase III Test, Implement & Demo (In Process)
 - o Phase IV Commercialization
- **Project End:** September 2017 (Projected)

Performer:	FoxGuard Solutions
Development Partner:	TDi Technologies
Program Participant:	NRG Energy
Federal Cost:	\$3,298,891.00
Cost Share:	\$995,344.00
Total Value of Award:	\$4,294,235.00
Funds Expended to Date:	38%

Advancing the State of the Art (SOA)

Current State

- Existing solutions:
 - $_{\odot}$ Are fragmented with limited coverage
 - \circ Do not provide standardized actionable output
 - \circ Have widely varying capability sets

Feasibility of Our Approach

- Fill a gap left by existing solutions
- Minimize performance impact and ensure system stability
- · Leverage what has come before us and has been proven in this environment
- Release iteratively, remain flexible and pivot when necessary

Advantages to Our Approach

- Common interface across different equipment types and genres
- Data translation layer promotes uniformity of information to the end user

Advancing the State of the Art (SOA)

End User Benefits

- Centralizes patch and update information
- Supports programmatic equipment querying using automation and a common toolset
- Simplifies association between software and available patches / updates

Cybersecurity Advancements

- Promotes end user awareness around patching, presence of vulnerabilities and change management processes
- Provides common security classification in absence of vendor classification
- Considers named sub-components and libraries to provide more comprehensive security assessment
- Reduces likelihood of incorrect patch application
- Standardizes presentation of patch information to end user

Challenges to Success & Paths to Overcome

Challenge 1: Lack of Vendor Cooperation and Support

- Engage the asset owners leverage collective voice to drive vendors' attention
- Continued education and discussions with vendors

Challenge 2: Technical Limitations with Equipment Querying

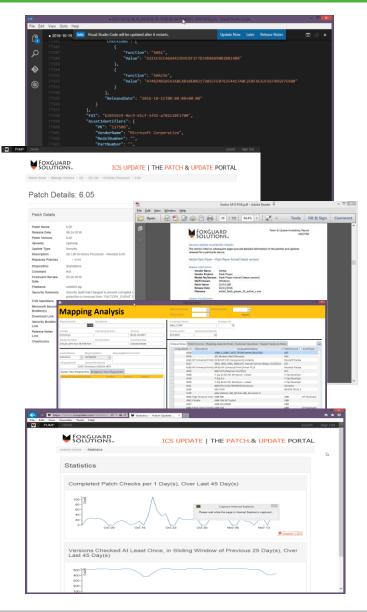
- Usage of native equipment protocols and commands
- Allow flexibility in defining what should be programmatically queried vs. manual

Challenge 3: Patch and Update Data is Compromised

- Implementation of secure development practices and technologies
- Usage of "meaningless keys" to represent sensitive equipment attributes

Challenge 4: Standardizing a Highly Diverse Industry

- Usage of a data translation engine to standardize outputs based on diverse inputs
- Usage of automation technologies


Progress to Date

Major Accomplishments

- Patch and Update Portal and Administration Portal (backend) is fully operational for internal use and being tuned based on daily use
- First iteration patch mining automation tools created
- First iteration of the Asset Analysis Tool created, launched and in use
- Patch and Update Portal and Equipment Query Solution integration proof of concept successful
- Patch Availability Reporting capabilities are fully operational for external use and being tuned based on participant and asset owner feedback

Milestones Reached

Milestone #2 – Conduct Project Research & Field Interviews Completed

Collaboration/Technology Transfer

End-to-end

solution features

Asset Owner Benefits

- Patch and Update Portal
- Equipment Querying Solution
- Additional Program Elements

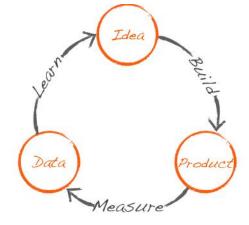
Vendors and Equipment Manufacturers Benefits

- Patch and Update Portal
 - $\circ\,$ Increase accessibility to publically available patch and update information
 - \circ Drive awareness of sub-component and library changes for development teams

Other Industry Member Benefits

- Patch and Update Portal
 - $\,\circ\,$ Increase accessibility to publically available patch and update information
 - ${}_{\odot}$ Awareness of private patch and update information

Gaining Industry Acceptance

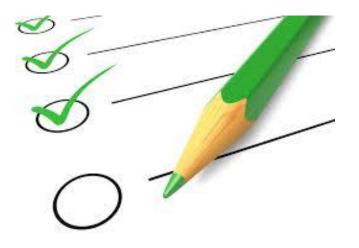

Do Not Operate in a Vacuum – Inform & Solicit Feedback

- Collaboration with program participant and other asset owners to maintain continuous feedback loop
- Continued education and exposure with vendor, OEMs and other industry members

Utilize MVP Approach, Iterate and Pivot When Necessary

- In-house testing of individual program elements
- In-house testing of partial system integration
- End-to-end dry run testing in our in-house lab environment
- End-to-end field testing with program participant at demonstration site

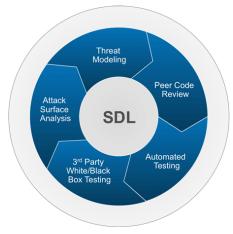
Support with Factual Data to Quantify Benefit


Next Steps in Our Project

Next Steps

- Completion of Patch Validation, Education and Training efforts
- Refinement of Equipment Querying Solution
- Full integration between program elements
- In-house dry run testing
- In-field testing with on-site demonstration with program participant (NRG Energy)
- Continued commercialization activities
- Go to Market!

Key Milestones to Accomplish


- 05/31/2017 Design and Development Complete
- 07/31/2017 In-House Dry Run Testing
- 09/15/2017 In-Field Demonstration with Program Participant

Cybersecurity Considerations

Development Approach

- Secure Development Lifecycle (SDL) is standard operating procedure
 - $\,\circ\,$ Use of pair programming and peer review prior to commit
 - Automated unit, integration and system testing to ensure code promises are met
 - $\,\circ\,$ Strict use of version control and code merge practices
 - Protections in place against insider threat
 - \circ Continuous learning / awareness of latest threat vectors

• Where possible, approach is to simply avoid development methods that have insecure implementation possibilities – reduce attack surface

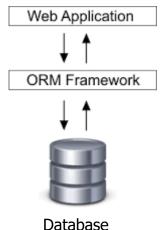
How are We Protecting Sensitive Information

- Data in Transit: Delivered via secure site-to-site file transfer technologies with automated removal from externally accessible system upon receipt
- Data at Rest: Stored in encrypted storage requiring multi-factor authentication over physical and logically restricted network segment

Cybersecurity Considerations

How are We Securing the Patch and Update Portal

· Hosted entirely in cloud


 Provides strong physical security, high availability and stringently managed environments

- Running on Service Oriented Architecture (SOA)
- Uses Object Relational Mapping (ORM) and Model View Controller (MVC) frameworks to abstract direct database access
 - ORM framework protects database (mitigates ability to execute SQL injection and other common web/database attacks)
 - Code is not executed directly against the database, but rather against the ORM framework (which handles the backend database communication)

 $_{\odot}$ MVC helps protect against XSS and other similar attacks

- Minimum application layer / component interdependence
- No shared code between the various application layers and functions means that a compromise of code in one component does not mean a compromise elsewhere

Conclusion

Follow-On Discussion

Q&A