Stan Pietrowicz

Applied Communication Sciences

CyberSecurity Intrusion Detection and Monitoring for Field Area Networks

Cybersecurity for Energy Delivery Systems Peer Review August 5-6, 2014

CyberSecurity Intrusion Detection and Monitoring for Field Area Networks

• Objective

- Improve Situational Awareness
 with a Continuous Monitoring
 and Intrusion Detection Solution
 - AMI Wireless FANs
 - DA Wireless FANs

• Schedule

- Phase I: 1/2014 12/2014
- Phase II: 1/2015 6/2015
- Wireless Traffic Research with Software Development (2014)
- Demonstration & Transition to SecureSmart [™] MSS (2015)

- Total Value of Award: \$1,280,766.00
- % Funds expended (6/27/14): 35.4%
- Performer: Applied Communication Sciences (ACS)
- Partners: Sacramento Municipal Utility District (SMUD)

Advancing the Start of the Art (SOA)

- Accelerate research on a sensor-based system to independently monitor wireless AMI and DA Field Area Networks (FANs)
- Develop enhanced set of operational capabilities to detect anomalous behavior and improve asset owner situational awareness and visibility into FANs
- Integrate enhanced intrusion detection analytics, monitoring and analysis tools into ACS's SecureSmartTM Managed Security Service
- Demonstrate solution value and security benefits in our utility partner's (SMUD) operational environment
- Advance first-of-its-kind technology to a validated, full-scale monitoring solution for the energy sector

Moving Beyond Defensive Controls with Continuous Detection and Monitoring

- Detect anomalous behavior and early signs of attack
- Detect exploitation of known weaknesses discovered in security assessments
- Provide continuous security validation and configuration compliance
- Ensure safeguards to customer privacy

- Provide multi-level, real-time view of FAN health and security
- Provide independent "ground truth" to help mitigate supply chain cyber threats
- Overlay onto AMI/DA Infrastructure at all stages of deployment
- Unobtrusive to AMI/DA operation

New Visibility and Situational Awareness into Field Area Networks

Challenges to Success

- How do FAN security weaknesses manifest themselves in field communications?
 - Conduct formal security analysis of AMI & DA communications
- What is normal FAN behavior and how do you measure it?
 - Study production FAN traffic and develop a set of orthogonal indicators for real-time health monitoring
- How do we cover large service areas?
 - Evaluate efficacy of mobile probes installed in fleet vehicles
- How do we abstract packet "bits and bytes" into situational awareness?
 - Develop real-time dashboard and database-driven analytics to visualize current state, communication flows and network topology

Rich Production Traffic Environment at SMUD

- 625,000+ Meters
- 900 Square Miles with Diverse
 Population Density
- AMI and DA Wireless FANs in Operation
- 10 Field Probes Deployed
 - 7 Fixed Probes
 - 3 GPS-enable Mobile
 - 6 Sampling
 - 1 Full Band

- 24 x7 Traffic Streams
- 1 Year Traffic History
- Turn-up of New Smart Meter Applications
- Supportive Security, Meter Operations & DA Teams

Progress to Date Wireless IDS Research

- Create a formal threat model to holistically identify targets and attack vectors
- Analyze Production AMI and DA traffic for real-world weaknesses
- Investigate, develop and test detection methods for top ranking threats
 - Deep Packet Inspection
 - Stateful Behavior Models
 - Statistical
 - White Lists
- Consider differences among AMI systems and 802.15.4g standard
- Task Report 7/2014

• Example Discoveries

- Improper Traffic Flows
 - AMI and DA Production Systems
 - Bordering Utilities
 - Production and Test Environments
- Unauthorized Protocols and Traffic Exchange
- Insecure SCADA Traffic
- Discovery of "Rogue" Networks
- System Configuration Issues
- FAN Security Issues with New AMI Application
- Reappearance of Decommissioned
 Field Equipment
- Gratuitous and Malformed Packets
- Unknown Devices
 - Unexpected System Changes

Progress to Date TrafficProfiler Dashboard Indicators

- A Multi-level, Real-Time Monitoring Strategy
 - System Wide
 - Service Area
 - Per Probe
 - Individual Device or Indicator
- Evaluated 27 of 40+ Potential Indicators using Filtered Fields, Field Logic and Analysis Operators
 - Count
 - Ratio
 - Unique
- Latency
- Percent
- Determined Optimal Sampling Intervals and Statistical Baselines for Alarm Generation
- Prototype Indicators have already Detected a Variety of System Anomalies
 - Router Failures
 - Mesh Routing Problems and Disturbances
 - Partial Backhaul Failure

Real-Time Warning of FAN Problems vs Today's 4-hr Meter Read "Health Indicator"

Progress to Date MeshView NetAnalytics & Visualization

• Sample Use Cases

- Conduct a Security Forensics
 Investigation
- Troubleshoot a FAN Problem
- Investigate Node Connectivity
- Analyze a System or Routing Failure
- Investigate Meter Read Failures
- Improve, Re-engineer or Extend
 FAN
- Identify Overused Meters for Messages Relaying
- Monitor Traffic Mix for Service Integrity

Example Features

- View Logical & Geospatial Routing Topology
- View Mesh Connectivity
- Time lapse Playbacks of Mesh Behavior
- Node Behavior Analysis
- "Top Talker", Traffic Composition, and Other Statistics

Collaboration/Technology Transfer

Web Video

Press Releases

Conference Talks

SMUD's Wireless Mesh Intrusion

Wireless

Software

Conference Demos

Technology Intro via Security **Assessments** Network Hardware NORTHERN VIRGINIA

TECHNOLOGY COUNCIL

Smart Grid Pilots

Packaging The Technology into a Utility Solution ACS SecureSmartTM Managed Security Service

- Complete Continuous Monitoring as a Service (CMaaS) for Utilities that bundles:
 - ACS First-of-its kind Sensor Technology
 - MSS Monitoring Infrastructure
 - Analysis and Visualization Applications
 - Network and Cyber Monitoring Services

• 24x7 Anomaly and Intrusion Detection

- AMI, DA, ICCP, DNP3, and PMU networks
- Experience-driven and model-based IDS analytics

• Daily Cyber Threat Analysis and Exchange

- Experts review bulk alerts and perform trace analysis, investigate and track suspicious activity
- Threat Information Exchange
- Incident notification, weekly calls, and monthly reports

Real-Time Network Health Monitoring

Integrates with SIEM and NOCs

Next Steps for this Project

Complete Phase I Research

- Continue developing intrusion detection deep packet inspection rules, stateful models, and statistical approaches
- Continue developing traffic indicators and formulating behavioral baselines
- Evaluate efficacy of Mobile Probes and upstream impacts
- Phase II Demonstration
 - Prepare and deploy new capabilities at SMUD
 - Integrate into Operations Environment
 - Refine capabilities to support Use Cases
 - Complete Commercialization Plan