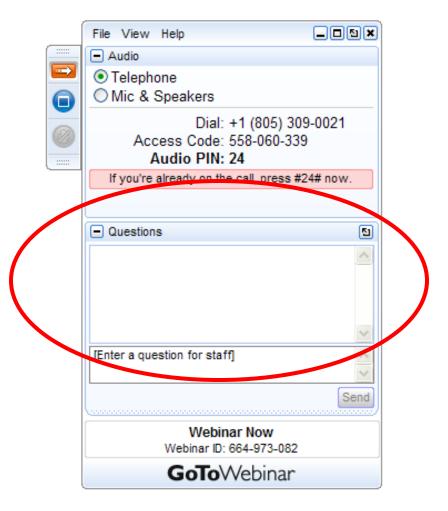
Fuel Cell Technologies Office Webinar


Energy Efficiency & Renewable Energy

Manufacturing Cost Analyses of Fuel Cell Systems for Non-Transportation Applications Vince Contini Senior Research Scientist at Battelle

January 24, 2017

• Please type your questions into the question box

 Battelle

 Vince Contini

 Fritz Eubanks

 Mike Heinrichs

 Manoj Valluri

 Mike Swickrath

 Mike Jansen

 Paul George

 Mahan Mansouri

Manufacturing Cost Analyses of Fuel Cell Systems for Non-Transportation Applications

1/24/2017

Outline

- Background
- Approach
- MHE Systems
 - Design
 - Costs
 - Sensitivity and Life Cycle Cost
- Primary Power & Combined Heat and Power (CHP) Systems
 - Design
 - Costs
 - Sensitivity and Life Cycle Cost
- Summary/Conclusions

Acknowledgements

Funding and support of this work by the U.S. Department of Energy, Fuel Cell Technologies Office is gratefully acknowledged

Collaborators

Have provided design inputs, cost inputs, design review, and manufacturing cost review

- Plug Power
- Hydrogenics
- Nexceris
- Ballard
- API Heat Transfer

- Innovatek
 - Panasonic
 - US Hybrid
 - NREL
 - Dry Coolers

- Johnson Matthey/Catacel
- Advanced Power Associates
- Zahn Electronics
- Strategic Analysis
- Cain Industries

- Watt Fuel Cell
- Vicor Power
- SMA-America
- Ideal Power
- Proctor and Gamble Honda •

- Outback Power
 - Technologies
- Tranter
- dPoint Technologies

6

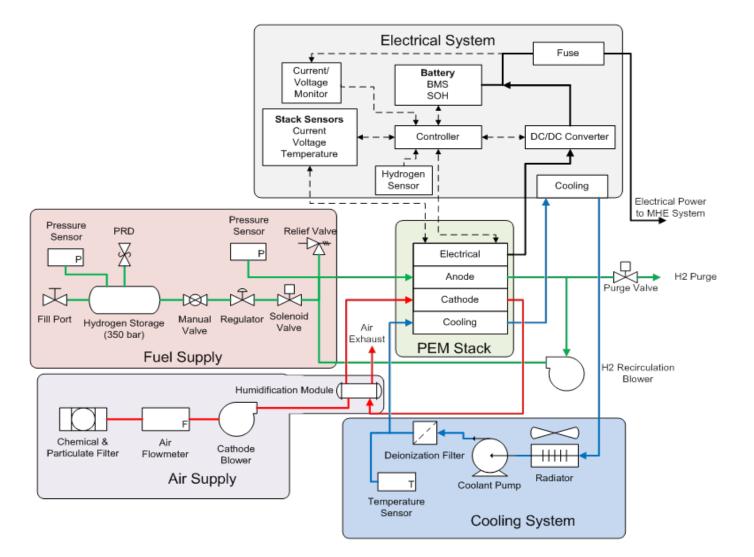
Background

5-year program to assist DOE in developing fuel cell systems for stationary and emerging markets by developing independent models and cost estimates

- Applications Primary (including CHP) power, backup power, APU, and material handling equipment (MHE)
- Fuel Cell Types Considered 80°C PEM, 180°C PEM, SOFC technologies
- Annual Production Volumes 100, 1K, 10K and 50K (only for primary production systems)
- Size 1, 5, 10, 25, 100, 250 kW

This year

• Updated Primary Power (including CHP) and MHE reports



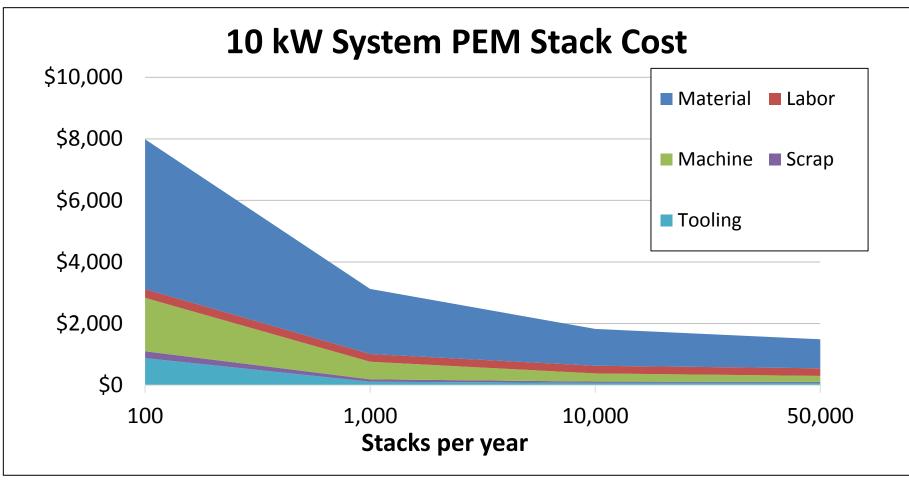
Approach – Manufacturing Cost Analysis Methodology

Market Assessment	System Design	Cost Modeling	Sensitivity & Life Cycle Cost Analysis
 Characterization of potential markets Identification of operational and performance requirements Evaluation of fuel cell technologies relative to requirements Selection of specific systems for cost modeling 	 Conduct literature search Develop system design Gather industry input Size components Gather stakeholder input Refine design Develop bill of materials (BOM) Define manufacturing processes Estimate equipment requirements 	 Gather vendor quotes Define material costs Estimate capital expenditures Determine outsourced component costs Estimate system assembly Develop preliminary costs Gather stakeholder input Refine models and update costs 	 Sensitivity analysis of individual cost contributors Life cycle cost analysis to estimate total cost of ownership

Representative MHE System

Nominal Design Basis

Parameter	1 kW System	5 kW System	10 kW System	25 kW System		
Power Density (W/cm ²)		C).68			
Current Density (A/cm ²)			0.8			
Cell Voltage (VDC)		().68			
Active Area Per Cell (cm ²)		200		400		
Net Power (kW)	1	5	10	25		
Gross Power (kW)	1.5	5.75	11.5	28.75		
Number of Cells (#)	14	53	106	132		
Full Load Stack Voltage (VDC)	9	36	72	90		
Membrane Base Material		PFSA, 0.2mm thi	ck, PTFE reinforced			
Catalyst Loading		Ŭ	t/cm² (total) relative to Anode			
Catalyst Application	Catalyst ink prepared, slot die coating deposition, heat dried, decal transfer					
Gas diffusion layer (GDL) Base Material	Carbon paper 0.2 mm thick					
GDL Construction	Carbon paper dip-coated with PTFE for water management					
Membrane electrode assembly (MEA) Construction	Hot press and die cut					
Seals	1 mm silicone, die cut					
Stack Assembly	Hand assembled, tie rods					
Bipolar Plates		Graphite composite	, compression molded	t		
End Plates		Die cast and mac	hined cast aluminum			

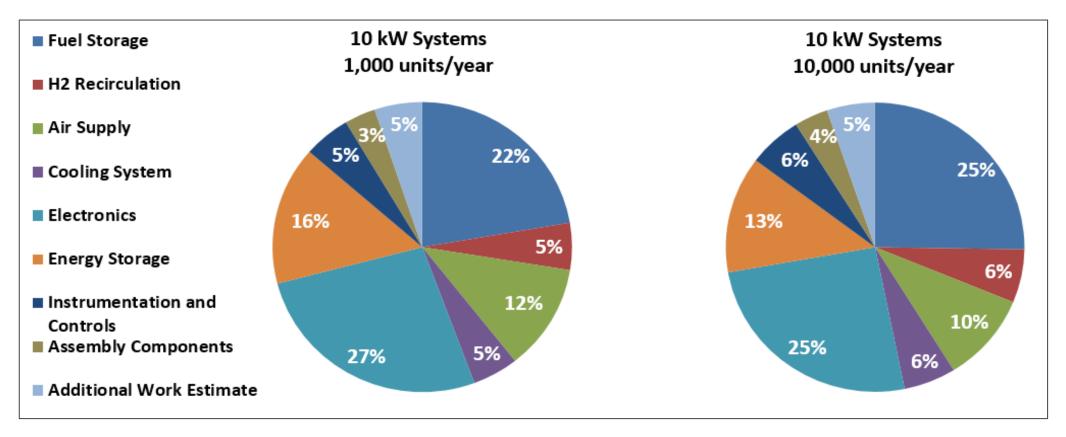

MHE Stack Manufacturing Cost – 10 kW System

Stock Componente	10 kW				
Stack Components	100	1,000	10,000	50,000	
MEA	\$4,990	\$2,052	\$1,106	\$828	
Anode / Cooling Gasket	\$172	\$75	\$62	\$57	
Cathode Gasket	\$144	\$34	\$29	\$26	
Anode Bipolar Plate	\$528	\$307	\$194	\$184	
Cathode Bipolar Plate	\$509	\$288	\$175	\$165	
End plates	\$114	\$60	\$55	\$29	
Assembly hardware	\$54	\$51	\$48	\$45	
Assembly labor	\$69	\$55	\$53	\$53	
Test and conditioning	\$1,405	\$204	\$105	\$102	
Total	\$7,986	\$3,126	\$1,827	\$1,490	
Cost per kW _{net}	\$799	\$313	\$183	\$149	

The catalyst, membrane and gas diffusion layer (GDL) all contribute to make the membrane electrode assembly (MEA) the largest contributor to stack cost – cost decreases to < \$150/kW at high volume

MHE Stack Cost – Volume Trends

Material cost is the highest contributor at all production levels

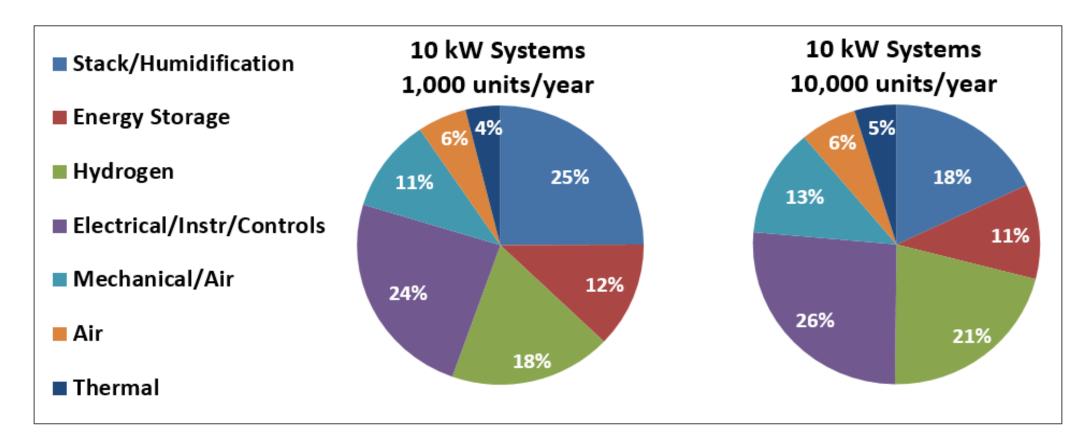

MHE BOP Costs

	10 kW				
BOP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	
Fuel Storage	\$2,808	\$2,595	\$2,416	\$2,242	
H2 Recirculation	\$1,012	\$608	\$572	\$538	
Air Supply	\$1,734	\$1,374	\$955	\$811	
Cooling System	\$612	\$578	\$541	\$510	
Electronics	\$4,380	\$3,093	\$2,431	\$1,915	
Energy Storage	\$2,500	\$1,800	\$1,250	\$1,038	
Instrumentation and Controls	\$666	\$590	\$560	\$536	
Assembly Components	\$429	\$390	\$351	\$316	
Additional Work Estimate	\$700	\$600	\$500	\$400	
BOP Total	\$14,841	\$11,628	\$9,576	\$8,306	

Price of power management and energy storage benefits significantly from increased production volume – but overall BOP costs remain significant

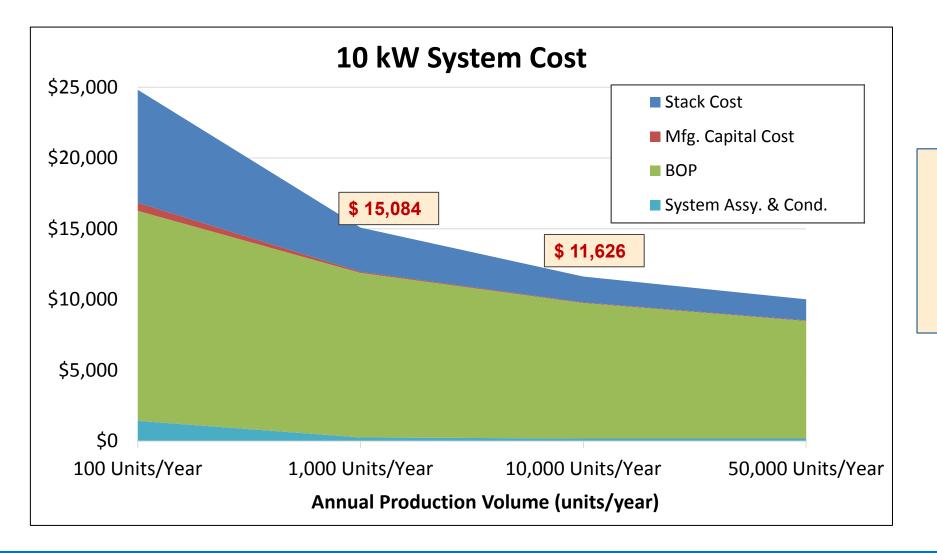
MHE BOP Costs

Fuel storage and electronics/energy storage are the largest contributors to BOP costs

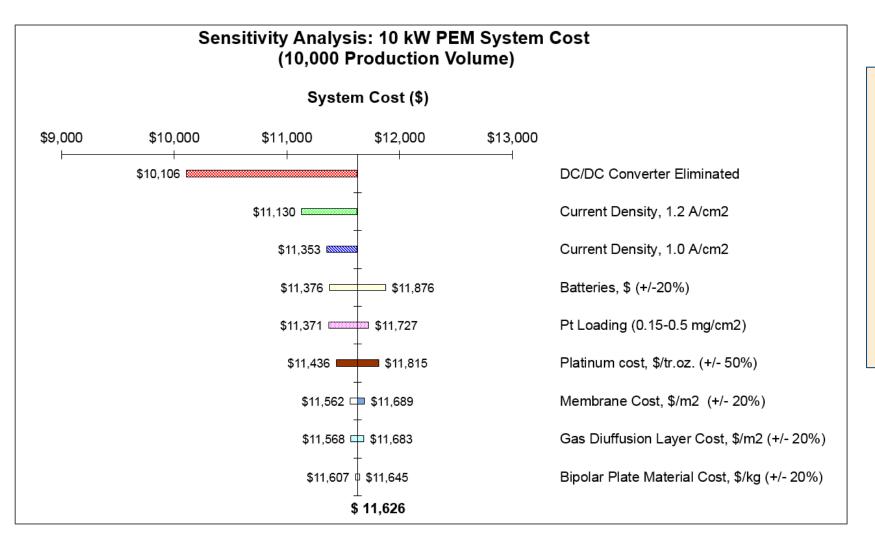

10 kW MHE System Cost Summary

Description	100 Units	1000 Units	10,000 Units	50,000 Units
Total stack manufacturing cost, with scrap	\$7,986	\$3,126	\$1,827	\$1,490
Stack manufacturing capital cost	\$567	\$71	\$39	\$38
BOP	\$14,841	\$11,628	\$9,576	\$8,305
System assembly, test, and conditioning	\$1,431	\$259	\$185	\$184
Total system cost, pre-markup	\$24,825	\$15,084	\$11,626	\$10,018
System cost per net KW, pre-markup	\$2,482	\$1,508	\$1,163	\$1,002
Sales markup	50%	50%	50%	50%
Total system cost, with markup	\$37,237	\$22,626	\$17,439	\$15,028
System cost per net KW, with markup	\$3,724	\$2,263	\$1,744	\$1,503

BOP dominates system cost for all capacities and volumes examined contributing at least 60% and up to 90% of system cost


10 kW MHE System Cost Summary

System costs at 1000 units/year have been validated to be consistent with current market status


10 kW MHE System Cost - Volume Trends

Stack costs reduce sharper than BOP costs with increased production volumes

10 kW MHE Cost Sensitivity Analysis

Elimination of the DC/DC converter reduces the cost by 13%, while a Pt cost can vary greatly with only minor effect

10kW System Lifecycle Cost Analysis

Input Data	Fuel Cell	Battery
Cost of forklift	\$25,000	\$25,000
Cost of power system	\$17,439	\$14,600
Cost of additional required power system infrastructure	\$0	\$2,500
Power system replacement time, hours	10,000	10,000
Power system replacement cost	\$3,075	\$14,600
Operational days per year	363	363
Shifts per day	2-3	2-3
Power factor, hours per 8 hour shift	1.6	1.6
Shifts per lifecycle	7,260-10,890	7,260-10,890
Power system replacement events per lifetime	2-3	2-3
Time refuel/recharge-battery change per day	2-3	2-3
Labor time for refuel/recharge – per event, minutes	3.3	13.5
Labor cost per day for refuel/recharge-battery change	\$2.20-\$3.30	\$9.00-\$13.50
Fuel usage per hour at full power, kg	0.64	
Electricity use per recharge, kW-hr		40
Daily consumables cost	\$13.71-\$20.56	\$7.68-\$11.52
Consumable (hydrogen/electricity) cost	\$6.70/kg	\$0.12/kW-hr

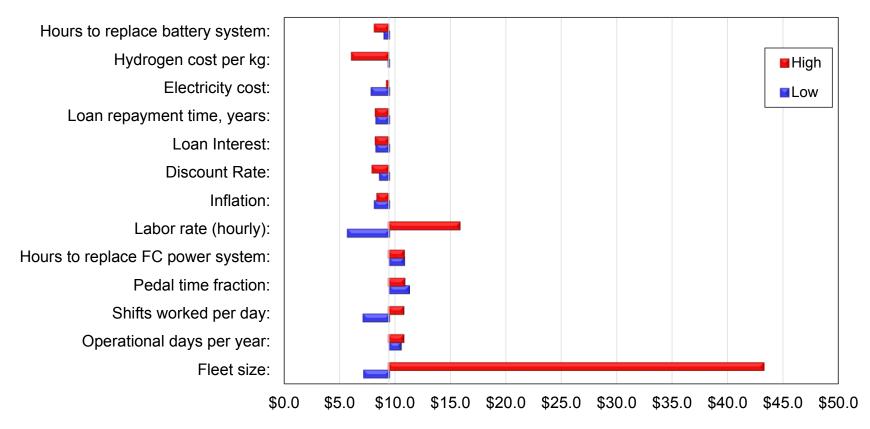
Baseline assumptions based on 10,000 units per year production volume – assumes two battery systems per forklift

10kW System Lifecycle Cost Analysis

Life Cycle Assessment Output with 1,000 units manufacturing volume						
Fleet size	75	75	300	300		
Shifts	2	3	2	3		
NPV of Savings, \$M	\$7.08	\$10.72	\$28.31	\$42.89		
ROI, %	25.90	38.60	25.90	38.60		
Payback Period, years	3.86	2.59	3.86	2.59		
ΔΕΑC, \$M	\$0.83	\$1.26	\$3.32	\$5.03		

Value proposition improves for 3 shifts a day and higher production volumes

Life Cycle Assessment Output with 10,000 units manufacturing volume						
Fleet size	75	75	300	300		
Shifts	2	3	2	3		
NPV of Savings, \$M	\$7.13	\$10.80	\$28.52	\$43.21		
ROI, %	29.24	43.58	29.24	43.58		
Payback Period, years	3.42	2.29	3.42	2.29		
ΔEAC, \$M	\$0.84	\$1.27	\$3.34	\$5.07		

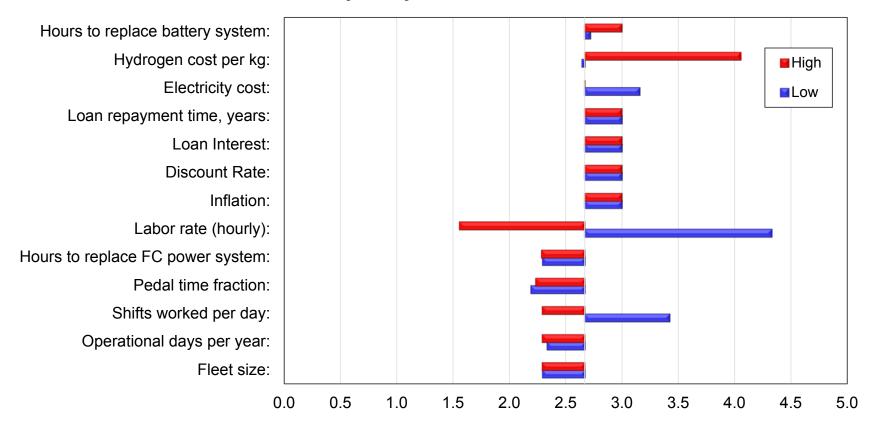


MHE Lifecycle Cost Sensitivity Analysis

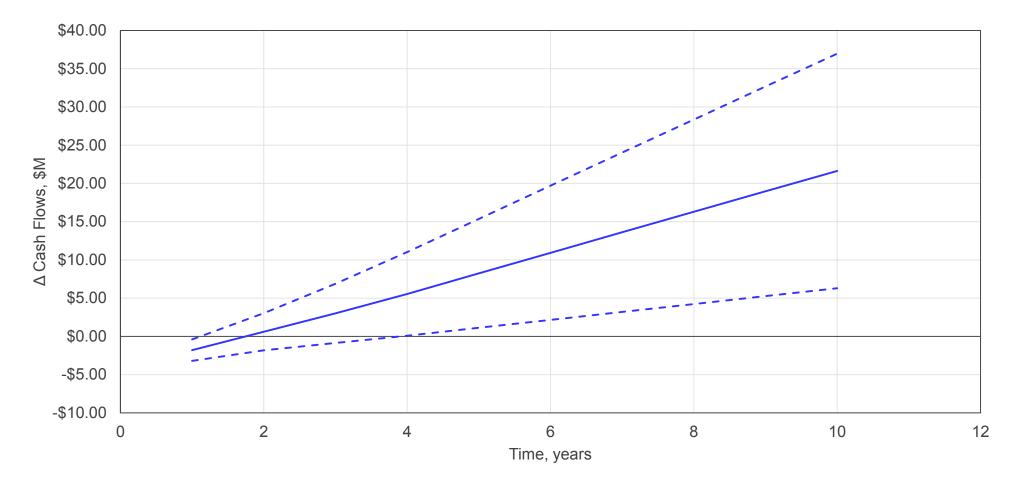
Variable	Low	Nominal	High
Fleet size	50	75	300
Operational days per year	260	312	363
Shifts worked per day	2	3	3
Pedal time fraction	0.15	0.20	0.25
Hours to battery system	7,500	10,000	12,500
Hours to replace fuel stack system	5,000	10,000	15,000
Labor rate (hourly)	\$15.00	\$25.00	\$35.00
Inflation	1.45%	1.91%	2.38%
Discount Rate	7%	8%	9%
Loan Interest	2%	3%	4%
Loan repayment time, years	5	10	15
Electricity cost, \$/kW-hr	\$0.10	\$0.12	\$0.17
Hydrogen cost, \$/kg	\$5.00	\$6.70	\$9.00

10kW System Sensitivity Analysis Results

NPV \$M, 10 kW fleet


10kW System Lifecycle Cost Analysis

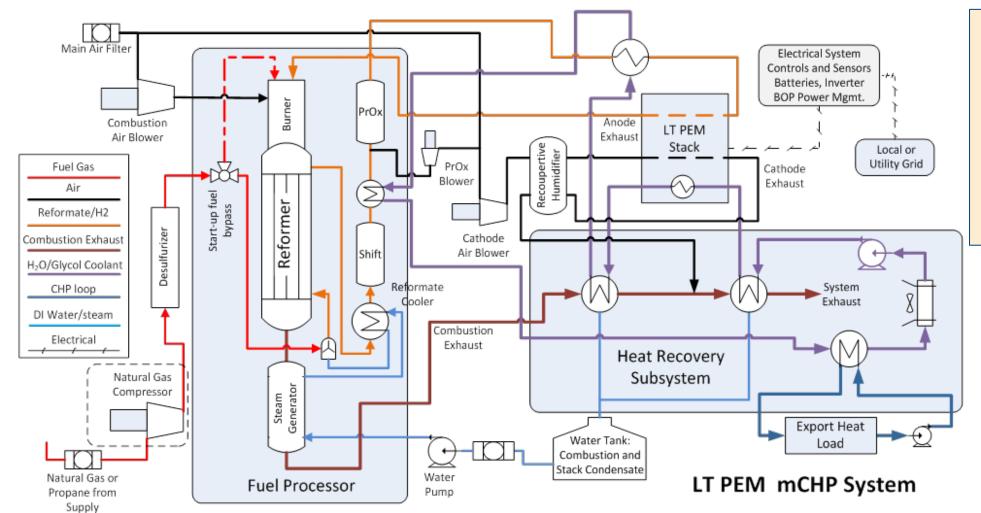
ROI %, 10 kW fleet


10kW System Lifecycle Cost Analysis

Payback years, 10 kW fleet

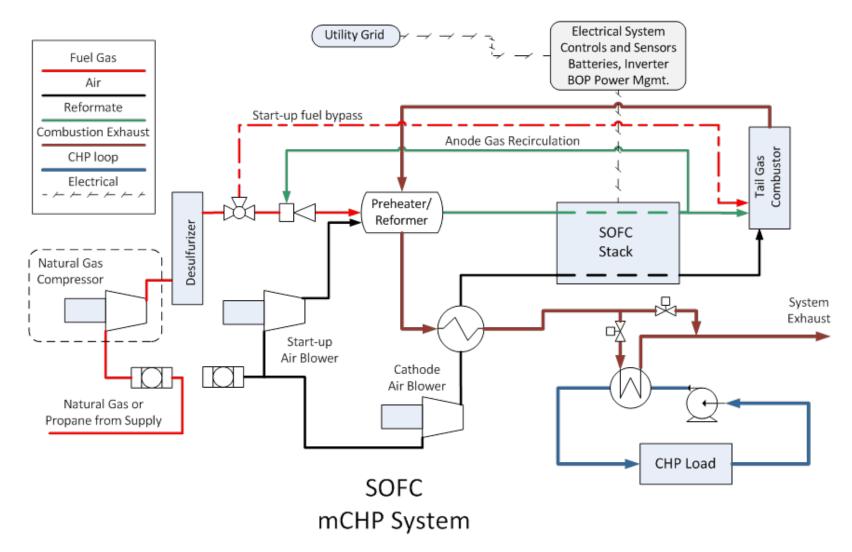
10kW System Cash Flow Diagram

Expected change in cash flow diagram, based on selecting fuel cells over battery power, with error-bounds as determined by the mean cash flow with a single standard deviation as generated through 10,000 Monte Carlo iterations assuming a manufacturing volume of 10,000 units.



MHE Market Highlights

- To date MHE has been the **biggest success story** for the fuel cell industry
- Robust collaboration (true-partnership) between stakeholders and manufacturers facilitated customized MHE programs and helped lead to the market's success
- Greenfield/Brownfield projects are both viable with an even stronger value proposition for Greenfield projects
- Success of pilot studies helped lead to higher production, standard system/stack design and supply chain leverage for cost reduction (as much as 70% over the past 5 years in one case)
- Success of forklift application has motivated manufacturers to pursue new markets such as **auto-guided vehicles** (**AGV**) and cargo/industrial trucks


Representative LTPEM CHP system

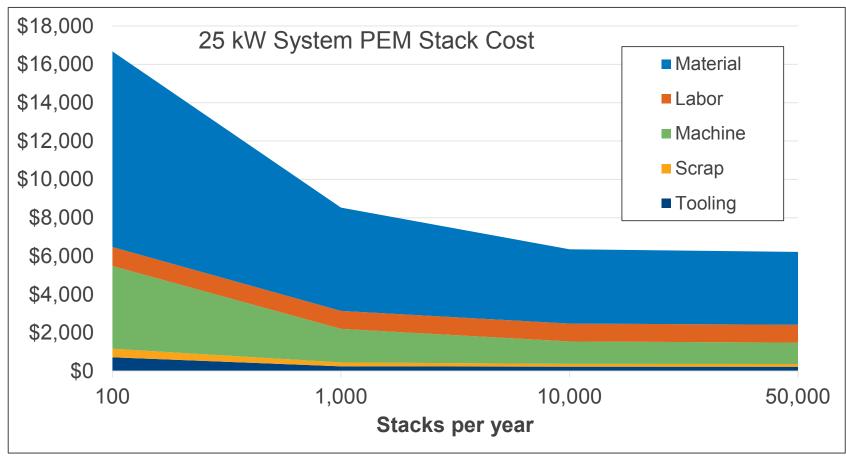
Complex system due to need for fuel processing with H₂ cleanup – requiring multiple heat exchangers

Representative SOFC CHP system

SOFC system is less complex than the PEM system due to simpler fuel processor and less needed heat exchangers

Primary Power/CHP Nominal Design Basis

Metric/Feature	Objective
Input, Fuel	Utility Natural Gas or Propane
	(>30 psig preferred)
Input, Air	Ambient air (-20° to 50°C)
Input, Other	N/A
Output	120/240 VAC
	480 VAC 3-phase optional
Net Power Output	1, 5, 10, 25, 100, 250 kW
System Efficiency (electrical)	
LTPEM	30%
SOFC	40%
System Efficiency Overall	
LTPEM	80%
SOFC	90%
System Life	50,000 hours
System Maintenance Interval	1.voor
(filter change: sulfur trap, air filter, fuel filter)	1 year
Grid Connection	Yes, local and/or utility
Operate off-grid	Yes, critical load back-up
Start off-grid	No


PEM Stack Manufacturing Cost – 25 kW System

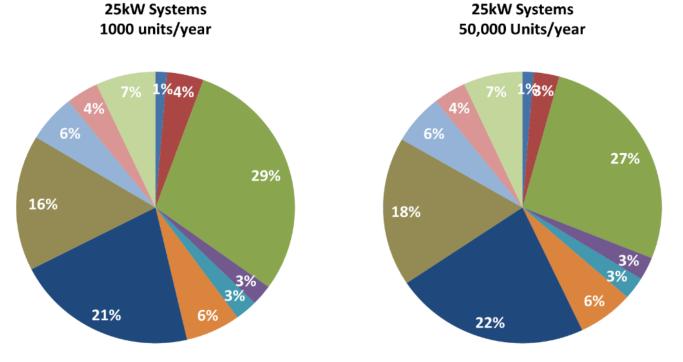
Stack Components	25 kW System					
	100	1,000	10,000	50,000		
MEA	\$10,288	\$5,266	\$3,624	\$3,515		
Anode / Cooling Gasket	\$508	\$304	\$240	\$238		
Cathode Gasket	\$179	\$81	\$65	\$65		
Anode Bipolar Plate	\$1,986	\$1,229	\$1,065	\$1,064		
Cathode Bipolar Plate	\$1,905	\$1,148	\$983	\$983		
End plates	\$111	\$58	\$53	\$35		
Assembly hardware	\$94	\$88	\$82	\$78		
Assembly labor	\$158	\$126	\$123	\$123		
Test and conditioning	\$1,445	\$227	\$120	\$116		
Total	\$16,674	\$8,527	\$6,354	\$6,217		
Cost per kW _{net}	\$667	\$341	\$254	\$249		

The catalyst, membrane and gas diffusion layer (GDL) all contribute to make the membrane electrode assembly (MEA) the largest contributor to stack cost

PEM Fuel Cell Stack Volume Trend

Material cost is the highest contributor at all production levels

CHP PEM BOP Cost

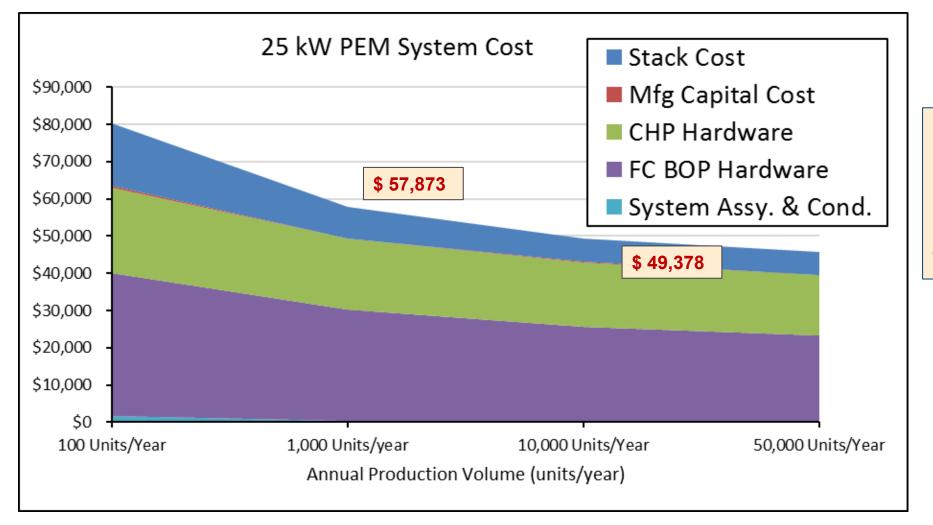

	25 kW				
BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	
Fuel Supply	\$1,782	\$646	\$553	\$508	
Water Supply	\$2,267	\$2,083	\$1,495	\$1,164	
Fuel Processing	\$19,140	\$14,355	\$11,813	\$10,537	
Air Supply (Combustion)	\$1,311	\$1,198	\$1,106	\$1,069	
Air Supply (Cathode)	\$1,550	\$1,270	\$1,098	\$1,045	
Heat Recovery	\$4,198	\$3,109	\$2,715	\$2,545	
AC Power	\$11,150	\$10,321	\$9,555	\$8,899	
DC Power	\$10,638	\$7,900	\$7,283	\$6,970	
Instrumentation and Control	\$3,068	\$2,762	\$2,495	\$2,357	
Assembly Components	\$2,019	\$1,836	\$1,652	\$1,485	
Additional Work Estimate	\$4,300	\$3,400	\$2,900	\$2,700	
BOP Total	\$61,423	\$48,879	\$42,665	\$39,279	

BOP has several significant contributors, particularly for the PEM systems – most notably, the fuel processing and AC & DC Power

CHP PEM BoP Manufacturing Cost

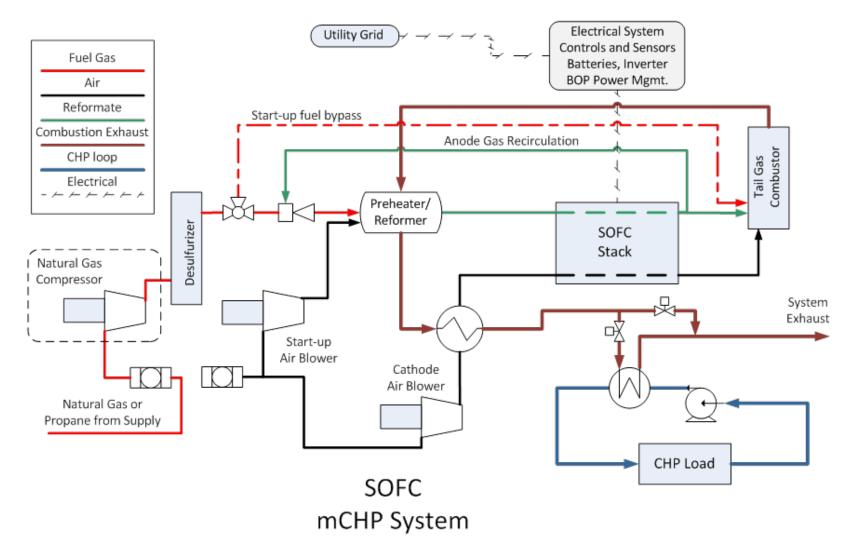
- Fuel Supply
- Water Supply
- Fuel Processing
- Air Supply (combustion)
- Air Supply (cathode)
- Heat Recovery
- AC Power
- DC Power
- Instrumentation and Controls
- Assembly Components
- Additional Work Estimate

BOP has several significant contributors, particularly for the PEM systems – most notably, the fuel processing and AC & DC Power – a hybrid 3-port DC/AC inverter has potential to lower cost of power equipment


25 kW CHP PEM Fuel Cell System Cost Summary

Description	100 Units	1,000 Units	10,000 Units	50,000 Units
Total stack manufacturing cost, with scrap	\$16,674	\$8,527	\$6,354	\$6,217
Stack manufacturing capital cost	\$567	\$101	\$65	\$64
CHP Hardware	\$22,817	\$18,890	\$17,356	\$16,329
FC BOP Hardware	\$38,606	\$29,990	\$25,309	\$22,950
System assembly, test, and conditioning	\$1,558	\$365	\$293	\$293
Total system cost, pre-markup	\$80,221	\$57,873	\$49,378	\$45,852
System cost per net KW, <mark>pre-markup</mark>	\$3,209	\$2,315	\$1,975	\$1,834
Sales markup	50%	50%	50%	50%
Total system cost, with markup	\$120,332	\$86,809	\$74,067	\$68,779
System cost per net KW, with markup	\$4,813	\$3,472	\$2,963	\$2,751

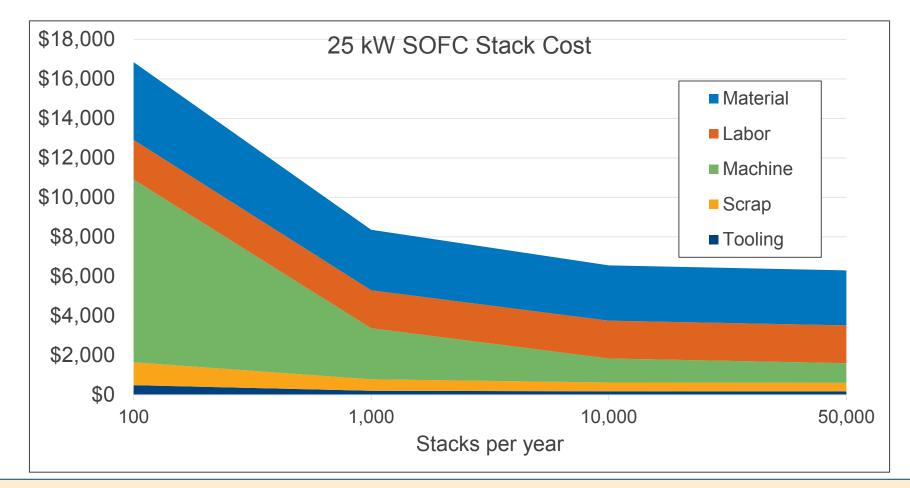
BOP dominates system cost for all capacities and volumes examined


25 kW PEM System Cost - Volume Trend

BOP contribution to cost is even more substantial as production volume increases

Representative SOFC CHP system

SOFC system is less complex than the PEM system due to simpler fuel processor and less needed heat exchangers

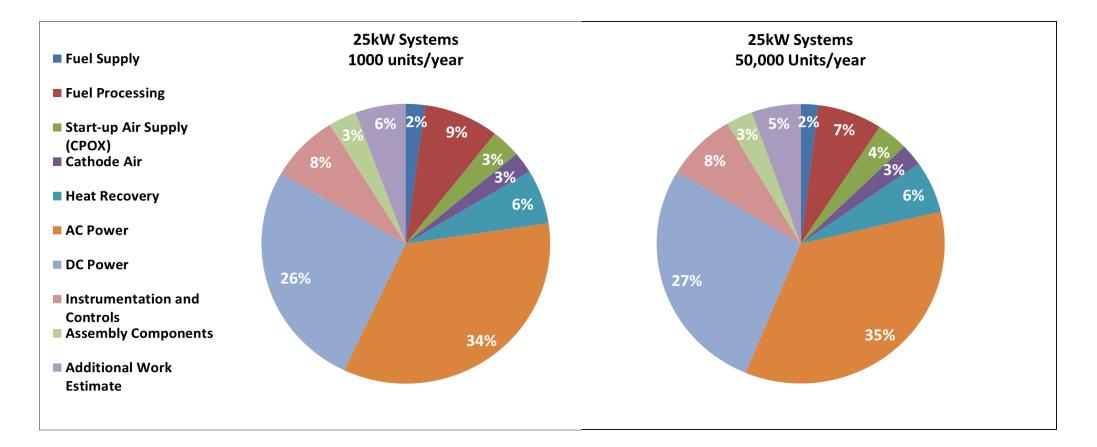

SOFC Stack Manufacturing Cost – 25kW System

	25 kW System				
Stack Components	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	
Ceramic Cells	\$4,828	\$3,395	\$2,766	\$2,650	
Interconnects	\$1,109	\$870	\$495	\$444	
Anode Frame	\$434	\$370	\$363	\$357	
Anode Mesh	\$365	\$275	\$191	\$189	
Cathode Frame	\$180	\$121	\$115	\$111	
Cathode Mesh	\$380	\$286	\$199	\$196	
Picture Frame	\$212	\$135	\$128	\$123	
Laser Weld	\$1,444	\$168	\$112	\$112	
Glass Ceramic Sealing	\$3,890	\$655	\$401	\$373	
End Plates	\$822	\$720	\$644	\$643	
Assembly Hardware	\$229	\$214	\$200	\$191	
Assembly Labor	\$266	\$212	\$207	\$206	
Stack Brazing	\$98	\$81	\$67	\$50	
Test and Conditioning	\$2,589	\$856	\$668	\$656	
Total Cost	\$16,848	\$8,358	\$6,555	\$6,302	
Cost per kW _{net}	\$674	\$334	\$262	\$252	

Machine utilization leads to significant cost reductions for processing steps such as laser weld and sealing while ceramic cells stay remain high due to machine time (kiln firing process and screen printing)

SOFC Fuel Cell Stack Volume Trend

Costs more evenly spread for SOFC Stacks between material, labor and machine costs –with machine cost dominating at low volume

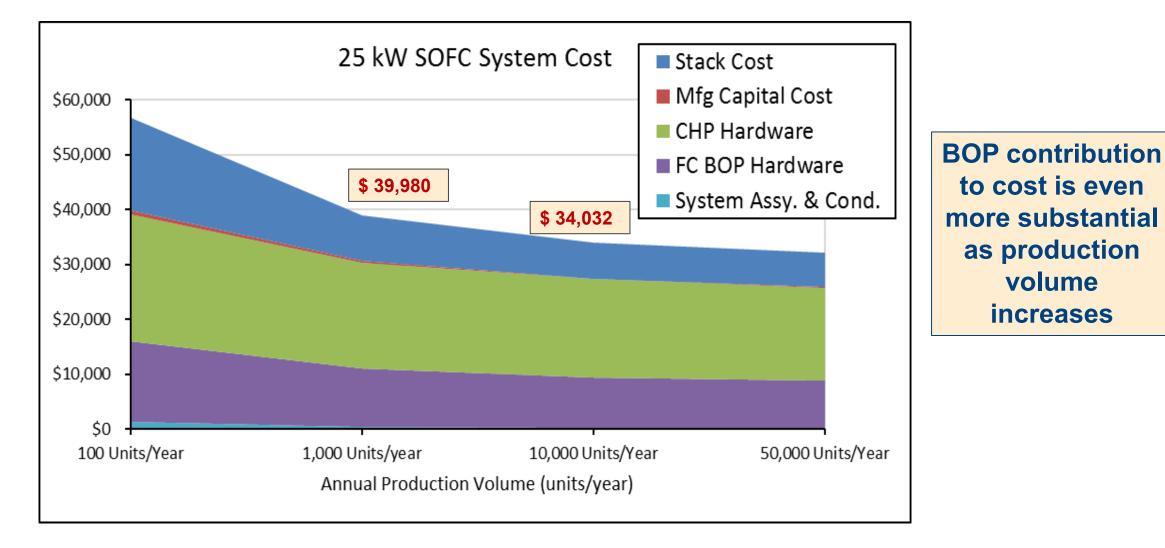

CHP SOFC BoP Cost

	25 kW				
BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	
Fuel Supply	\$1,782	\$646	\$553	\$508	
Fuel Processing	\$3,686	\$2 <i>,</i> 531	\$1,933	\$1,847	
Start-up Air Supply (CPOX)	\$1,094	\$1,004	\$931	\$899	
Cathode Air	\$816	\$735	\$661	\$641	
Heat Recovery	\$2,376	\$1,881	\$1,618	\$1,532	
AC Power	\$11,150	\$10,321	\$9 <i>,</i> 555	\$8,898	
DC Power	\$10,638	\$7,900	\$7,283	\$6,970	
Instrumentation and Control	\$2,993	\$2,346	\$2,123	\$2,006	
Assembly Components	\$1,047	\$951	\$854	\$770	
Additional Work Estimate	\$2,100	\$1,700	\$1,500	\$1,400	
BOP Total	\$37,682	\$30,014	\$27,011	\$25,471	

BOP has several significant contributorsmost notably, AC & DC Power fuel processing is less significant than for PEM systems

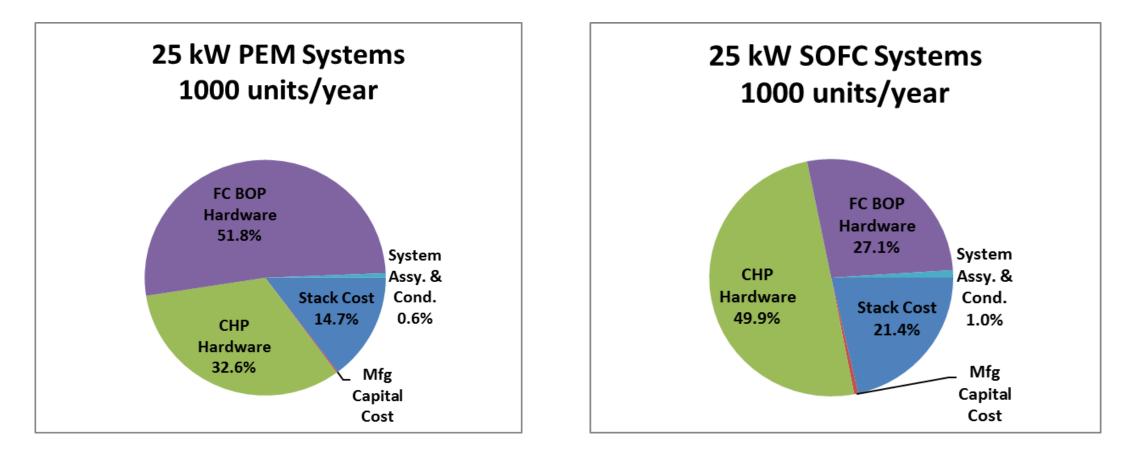
CHP SOFC BOP Manufacturing Cost

AC & DC Power contribute even more significantly than for the PEM system – a hybrid 3-port DC/AC inverter has potential to lower cost of power equipment

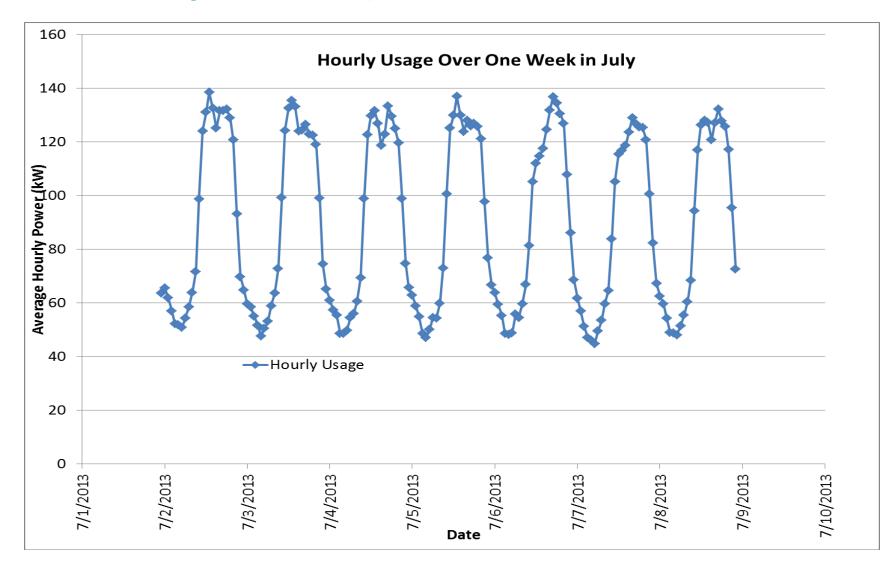

25 kW CHP SOFC Fuel Cell System Cost Summary

BOP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Total stack manufacturing cost, with scrap	\$16,848	\$8,358	\$6,555	\$6,302
Stack manufacturing capital cost	\$748	\$209	\$135	\$126
CHP Hardware	\$23,134	\$19,433	\$17,939	\$16,939
FC BOP Hardware	\$14,548	\$10,581	\$9,073	\$8,532
System assembly, test, and conditioning	\$1,428	\$399	\$330	\$330
Total system cost, pre-markup	\$56,706	\$38,980	\$34,032	\$32,229
System cost per KW _{net} , pre-markup	\$2,268	\$1,559	\$1,361	\$1,289
Sales Markup	50%	50%	50%	50%
Total system price, with markup	\$85 <i>,</i> 059	\$58,470	\$51,048	\$48,344
System price per KW _{net} , with markup	\$3,402	\$2,339	\$2,042	\$1,934

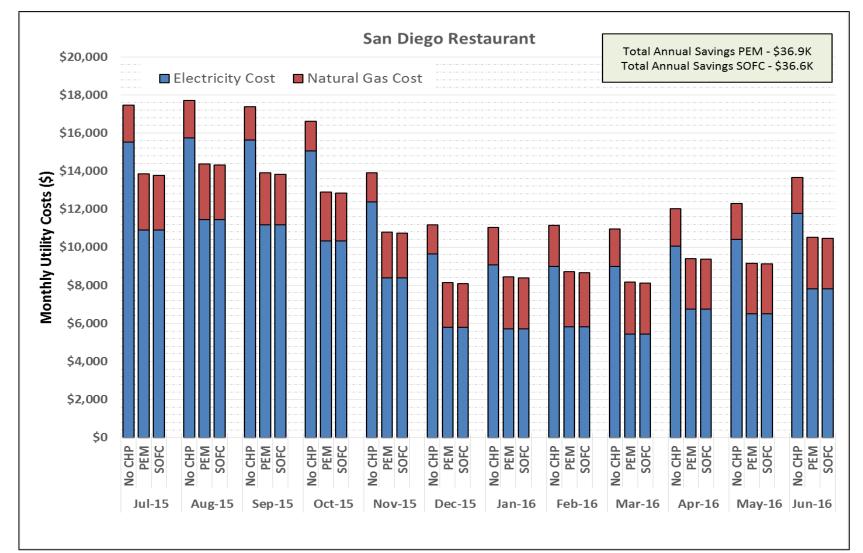
BOP dominates system cost for all capacities and volumes examined



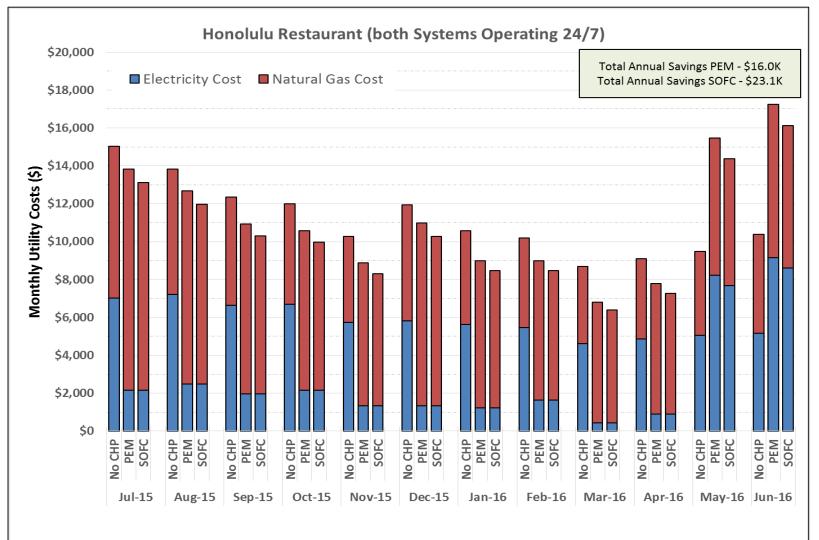
25 kW SOFC CHP System Cost - Volume Trend


CHP Fuel Cell System Cost Comparison

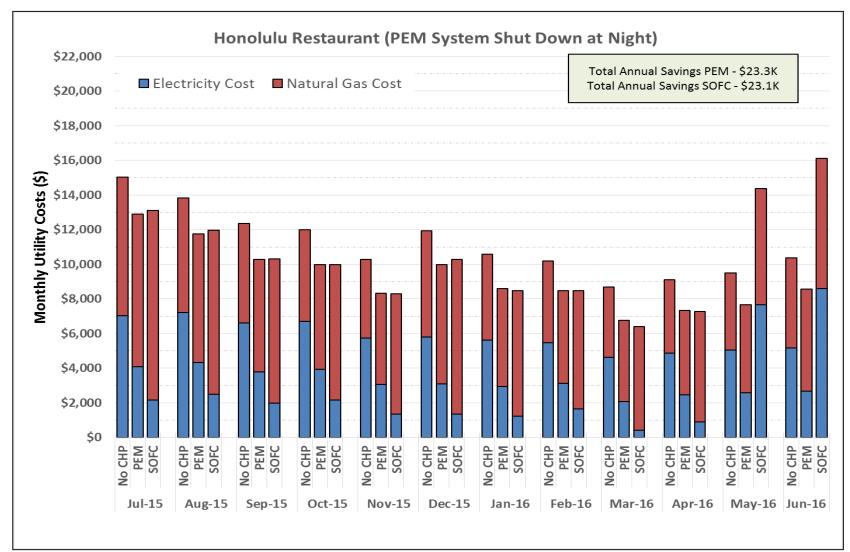
For both technologies, BOP (including CHP hardware) dominates – more significant for the PEM systems



Life Cycle Cost Analysis Assumptions – Restaurant in Southern California


Life Cycle Cost Analysis – 25kW System

Significant annual savings on utilities for San Diego restaurant due to high electricity costs


Life Cycle Cost Analysis – 25kW System

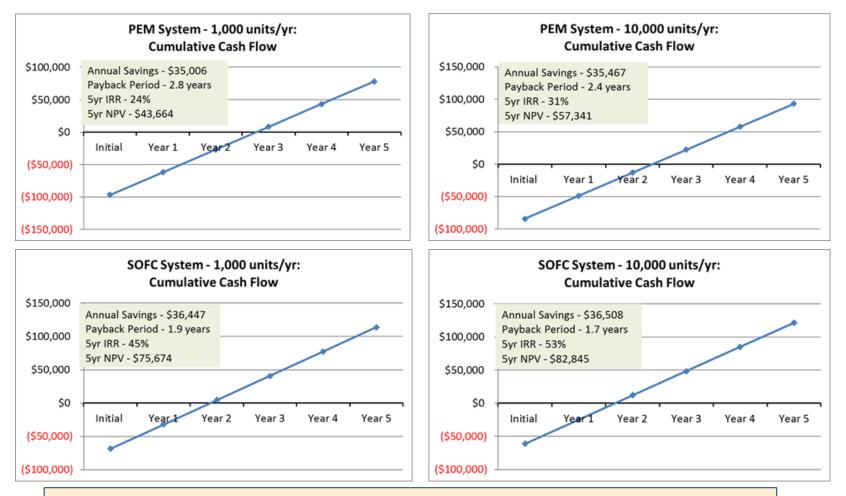
Even with high cost of natural gas in Hawaii, still significant savings resulting from CHP system is heat load is substantial

Life Cycle Cost Analysis – 25kW System

PEM systems benefit even more from shutting down when the restaurant is not open for business

Life Cycle Cost Analysis

PEM – 1,000 units/year	Fuel Cell	Utilities Only	SOFC – 1,000 units/year	Fuel Cell	Utilities Only
Cost of System	\$86,809	N/A	Cost of System	\$58,470	N/A
Installation Cost	\$10,000	N/A	Installation Cost	\$10,000	N/A
Annual Cost of Capital (10%)	\$24,683	N/A	Annual Cost of Capital (10%)	\$17,457	N/A
Annual Consumables	\$1,252	N/A	Annual Consumables	\$521	N/A
Annual O & M Costs	\$750	N/A	Annual O & M Costs	\$750	N/A
Annual Electricity Utility Cost	\$96,028	\$143,226	Annual Electricity Utility Cost	\$96,028	\$135,427
Annual Gas Utility Cost	\$32,373	\$22,184	Annual Gas Utility Cost	\$31,663	\$26,290
Annual Total	\$155,087	\$165,410	Annual Total	\$146,420	\$161,717
Annual Savings	\$10,323		Annual Savings	\$18,990	


PEM – 10,000 units/year	Fuel Cell	Utilities Only	SOFC – 10,000 units/year	Fuel Cell	Utilities Only
Cost of System	\$74,067	N/A	Cost of System	\$51,048	N/A
Installation Cost	\$10,000	N/A	Installation Cost	\$10,000	N/A
Annual Cost of Capital (10%)	\$21,434	N/A	Annual Cost of Capital (10%)	\$15,586	N/A
Annual Consumables	791.15	N/A	Annual Consumables	\$460	N/A
Annual O & M Costs	\$750	N/A	Annual O & M Costs	\$750	N/A
Annual Electricity Utility Cost	\$96,028	\$143,226	Annual Electricity Utility Cost	\$96,028	\$135,427
Annual Gas Utility Cost	\$32,373	\$22,184	Annual Gas Utility Cost	\$31,663	\$26,290
Annual Total	\$151,377	\$165,410	Annual Total	\$144,487	\$161,717
Annual Savings	\$14,033		Annual Savings	\$20,922	

Annual savings after all costs are taken into consideration

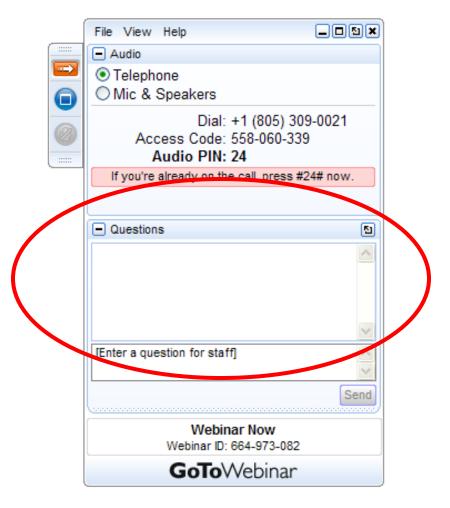
*Annual cost comparison when using CHP system in San Diego Restaurant with a Production Volume of 1,000 or 10,000 Units per Year

Life Cycle Cost Analysis

Favorable payback period and return on investment – but does require significant production volumes

*Cumulative cash flows for PEM and SOFC systems with production volumes of 1,000 and 10,000 units/year in the San Diego store

Summary


- MHE market has really started to take off
- Interest in the primary power and CHP market is beginning to take shape
- Emerging markets with positive value propositions can learn from the path of the MHE market
- In the words of one end user
 - Need to undertake early efforts with a "pilot mentality"
 - "Finding the right external business partner is key"
 - "Almost stopped pilots a couple of times, but were able to get through it by working together; reliability and value proposition is significantly better today; vendor and stakeholder were able to grow together"
 - "Holy grail is getting increased productivity, better sustainability and reduced greenhouse gas footprint"

800.201.2011 | solutions@battelle.org | www.battelle.org

• Please type your questions into the question box

Thank you

Donna Ho (Donna.Ho@ee.doe.gov) Vince Contini (continiv@battelle.org)

hydrogenandfuelcells.energy.gov