Fuel Cell Technologies Office Webinar

Energy Efficiency & Renewable Energy

Total Cost of Ownership Modeling for Stationary Fuel Cell Systems

December 13, 2016

Max Wei

Program Manager in Sustainable Energy Systems, Energy Analysis and Environmental Impacts Division Lawrence Berkeley National Lab • Please type your questions into the question box

File View Help	
- Audio	
 Telephone Mic & Speakers 	
Dial: +1 (805) 309-0021 Access Code: 558-060-339 Audio PIN: 24	
If you're already on the call, press #24# now.	
Questions	
[Enter a question for staff]	
Send	
Webinar Now Webinar ID: 664-973-082	
GoTo Webinar	

Partners

University of California, Berkeley

Laboratory for Manufacturing and Sustainability, Dept. of Mechanical Engineering:

— Manufacturing process analysis, DFMA analysis

University of California, Berkeley

Transportation Sustainability Research Center and DOE Pacific Region Clean Energy Application Center:

- System and BOP design, functional specs, BOM definition, parametric relationships
- CHP applications and functional requirements

Strategic Analysis

SOFC system design and functional specifications

Other Collaborators

— No other funded subcontracts, but many industry contacts and expert reviewers.

Outline

- Modeling Approach
- Direct Cost modeling
 - Direct costs are estimated for PEM and SOFC FC CHP systems from 1 to 250kW sizes and for various manufacturing volumes.
- Cost comparisons to existing systems in
 - Vs Japan micro-CHP
 - U.S. backup power systems.
- Externality valuation (e.g., health and environmental impacts)

— Externality valuation example for FC CHP in small hotels

Conclusions

Relevance & Goals

BERKELEY LAB

Total-cost-of-ownership (TCO) modeling tool for design and manufacturing of fuel cells in stationary and materials-handling systems in emerging markets

Expanded framework to include life-cycle analysis (LCA) and possible ancillary financial benefits, including:

 carbon credits, health/environmental externalities, end-of-life recycling, reduced costs for building operation

Identify system designs that meet lowest manufacturing cost and TCO goals as a function of application requirements, power capacity, and production volume

Provide capability for sensitivity analysis to key cost assumptions

BARRIERS

- High capital and installation costs with a failure to address reductions in externalized costs and renewable energy value
- Potential policy and incentive programs may not value fuel cell (FC) total benefits.

Overview: Chemistries and Applications

- Fuel cell types to be considered:
 - Conventional, low-temp (~80° C) PEM fuel cell (LT PEM)
 - Solid oxide fuel cell (SOFC)
- Application Space:

	SIZE	PRODU	PRODUCTION VOLUME (UNITS/YEAR)					
APPLICATION	(kWe)	100	1.000	10.000	50.000			
Combined Heat and Power (CHP)	1	Х	х	х	х			
	10	Х	х	х	х			
	50	Х	х	х	х			
	100	Х	х	х	Х			
	250	Х	Х	Х	Х			

	0175						
	SIZE	PRODUCTION VOLUME (UNITS/YEAR)					
APPLICATION	(kWe)	100	1.000	10.000	50.000		
Backup Dower	1	Х	х	х	Х		
	10	Х	Х	Х	Х		
(BU)	50	Х	Х	Х	Х		

• DOE Cost Targets

System Type	2015 Target	2020 Target
10 kWe CHP System	\$1,900/kWe	\$1,700/kWe
100-250 kWe CHP System	\$2,300/kWe	\$1,000/kWe

Approach: TCO Model Structure and Key Outputs

rrrr

1 - Costing Approach

Direct Manufacturing Costs

- Capital costs
- Labor costs
- Materials costs
- Consumables
- Scrap/yield losses
- Factory costs

Global Assumptions

- Discount rate, inflation rate
- Tool lifetimes
- Costs of energy, etc.

Other Costs:

- R&D costs, G&A, sales, marketing
- Product warranty costs

Source: Altergy Systems

$$C_{y} = C_{c} - C_{s} + C_{oc} + C_{br} + C_{p} + C_{m} - C_{dep}$$

Capital and Interest C_c End of Life Salvage Value C_s Operating Energy Cost C_{oc} Building or Floorspace Cost C_{br} Property Tax C_p Maintenance Cost C_m

2 - Fuel Cell System Life Cycle Cost (Use Phase) Modeling

Combined Heat & Power Fuel Cell System (100kW example)

Daily electricity load profiles for small hotel in AZ

Daily hot water load profiles for small hotel in AZ

u u u u u u

BERKELEY

PEM AND SOFC FC SYSTEM DIRECT MANUFACTURING COSTS

AWRENCE BERKELEY NATIONAL LABORATORY

Page 11

PEM CHP System Designs and Functional Specs

BERKELEY LAB

DFMA Manufacturing approaches for LT-PEM FC CHP and backup power systems

Component	Primary Approach	Reference
Membrane	Purchase Nafion	Patent review, Industry input
CCM*	Dual Decal, slot die coating	Literature, patents, industry input
GDL*	Spray coat MPL	Literature, industry input
Bipolar Plates*	Injection molded graphite –carbon composite (and Metal Plates)	Literature, patents, industry input
Seal/Frame MEA*	Framed MEA	Patents, industry input
Stack Assembly*	Partial to fully automated	Patents, Industry input
Endplate/ Gaskets	Graphite composite/ Screen printed	Industry input, literature
Test/Burn-in	Post Assembly 3 hrs	Industry input

Functional specs for 100kW CHP system operating with reformate fuel, 0.5mg/cm² Pt

Parameter	Value	Unit
Gross system power	124	kW
Net system power	100	kW
Electrical output	480V AC	Volts AC or DC
Waste heat grade	65	Temp. °C
Fuel utilization	80-95	%
Avg. System Net Electrical efficiency	32	% LHV
Thermal efficiency	51	% LHV
Total efficiency	83	Elect.+thermal (%)
Stack power	9.5	kW
Total plate area	360	cm ²
CCM coated area	232	cm ²
Single cell active area	198	cm ²
Cell amps	111	A
Current density	0.56	A/cm ²
Reference voltage	0.7	V
Power density	0.392	W/cm ²
Single cell power	78	W
Cells per stack	122	Cells
Stacks per system	13	Stacks

Manufacturing Cost Model – CCM, Metal Plates

CCM Process Flow-Cathode Coating Line

System Cost for 10/100kW CHP LTPEM

- Stack cost dominated by CCM then GDL and plate
- BOP_Non-FP and BOP_Fuel processor are 70%-85% of overall cost
- System direct cost < \$900/kW at high volumes

PEM BOP Components Cost Breakdown

 Balance of plant: about 27% power subsystem, 26% fuel processing, 17% misc.

AWRENCE BERKELEY NATIONAL LABORATORY

LT PEM Stack Cost Sensitivity

- Process yield and Power density dominate the cost sensitivity at all production levels
- Stack material cost more at high production volumes
- Stack capital cost less sensitive at high production volumes

50 kW SOFC CHP System with Reformate

SOFC CHP System Designs and Functional Specs

DFMA Manufacturing approaches for SOFC CHP and Power systems, anode-supported cell

Component	Primary Approach	Reference
Anode*	Ni / YSZ Tape casting	Patent review, Industry input
Interlayer*	Ni 50% / YSZ 50% Screen printing	Patent review, Industry input
Electrolyte*	YSZ – Screen printing	Literature, patents, industry input
Interlayer*	LSM 50 %/ YSZ 50% - Screen printing	Literature, patents, industry input
Cathode*	Conducting Ceramic– Screen printing	Literature, industry input
Plates*	Stamped metal plates with SS441	Literature, patents, industry input
Seal/Frame MEA*	Framed EEA	Patents, industry input
Stack Assembly*	Partial to fully automated	Patents, Industry input
Endplate/ Seals*	Metal endplate	Industry input, literature
Test/Burn-in	Post Assembly 3 hrs	Industry input

*Full DEMA Costing analysis was performed ERKELEY NATIONAL LABORATORY

50 kW Siz	e	<u>Best. Ests.</u>		Source
	Unique Properties:		<u>Units:</u>	
<u>System</u>	Gross system power	54.9	kW DC	
	Net system power	50	kW AC	
-	Physical size	2x3x3	meter x meter x meter	Based on Bloom ES-5700 - Not incl. CHP eqpt
	Physical weight	3600	kg	Based on Bloom ES-5700 - Not incl. CHP eqpt
	Electrical output	480V AC	Volts AC or DC	
	DC/AC inverter effic.	95.5%	%	FCE 2013
	Waste heat grade	220	Temp. °C	From ~800 C. stack after air pre-heat
	Fuel utilization % (first pass)	85%	%	CFCL 2014
	Fuel input power (LHV)	84.23	kW	
	Stack voltage effic.	64%	% LHV	function of cell voltage
	Gross system electr. effic.	65.1%	% LHV	
	Avg. system net electr. effic.	59.4%	% LHV	CFCL 2014 60% electr. Eff.
	Thermal efficiency	24.4%	% LHV	70% recovery of avail. Heat
	Total efficiency	83.8%	Elect.+thermal (%)	FCE = 83.4% LHV; CFCL 82%
Stook	Stock power	E4 96	L/\//	
Slack		54.00	cm^2	Nextech for 10 kW: active=300
-		320	cm^{2}	Est 61% of tot plate area
	Single cell active area	329	cm^{2}	10% loss than CCM area
		299		
		40	70 Λ	
	Current density	0.35	Λ	lames 2012: 0.364mA/cm2
	Reference voltage	0.35	V	From James 2012 DOF
	Power density	0.0	v \//cm^2	lames 2012: 0 201 W/cm2
	Single cell power	84	W/	Nextech: 103 W/cell
	Cells per stack	130	cells	
	Percent active cells	100	%	
LA	Stacks per system	5	stacks	

Functional Specs 50kW CHP with Reformate Fuel

Manufacturing Cost Model – EEA, Metal Plates

BERKELEY LAB

EEA Cost Plot - 100kW System

Metal Plate Process Flow

Plates Cost Plot - 100kW System

AWRENCE BERKELEY NATIONAL LABORATORY

System Cost for 10/100kW CHP SOFC

- Stack cost dominated by EEA then seal/frame at high volumes
- BOP are 60%-85% of overall cost
- System direct cost < \$600/kW at high volumes

BERKELEY

SOFC BOP Components Cost Breakdown

Balance of plant: about 40% power subsystem, 20% controls/metering, 15% fuel processing

LAWRENCE BERKELEY NATIONAL LABORATORY

CHP System Equipment Cost Estimates vs. DOE Targets

System	Units/yr	2020 DOE Target w/ Markup (\$/kW)	LT PEM direct cost (\$/kW)	LT PEM cost with 50% markup (\$/kW)	SOFC direct cost (\$/kW)	SOFC cos with 50% markup (\$/kW)	
		DOE Targets	This Work				
10kW CHP System	50,000	\$1,700	\$1,900	\$2,850	\$1,100	\$1650	
100kW CHP System	1000	\$1000	\$1,200	\$1,800	\$760	\$1140	

10 kW SOFC system meeting 2020 DOE target at high volume

S

PEM Backup System Design with H2 Fuel

rrrrr

BERKELEY LAB

PEM Backup Function Specs and Direct Cost

Functional Specifications

5 kW							
Unique Properties:		Units:					
Gross system power	5.20	kW					
Net system power	5	kW (AC)					
total plate area	360	cm ²					
CCM coated area	306	cm ²					
single cell active area	285	cm ²					
gross cell inactive area	21	%					
cell amps	116	А					
current density	0.405	A/ cm ²					
reference voltage	0.650	V					
power density	0.263	W/ cm ²					
single cell power	75.4	W					
cells per stack	69	cells					
percent active cells	100	%					
stacks per system	1	stacks					
Compressor/blower	0.025	kW					
Other paras. loads	0.025	kW					
Parasitic loss	0.05	kW					

5kW System Direct Manufacturing Cost

COST COMPARISONS TO MARKET DATA AND OTHER MODELS

AWRENCE BERKELEY NATIONAL LABORATORY

Page 27

Japan Micro CHP (LT PEM) – LBNL cost modeling can help disaggregate cost reductions

17% Learning curve from 2009-2014, nominal 0.7kW system

• 50% cost reduction observed from 2009 to 2014

- LBNL Cost model implies about 23% cost reduction from economies of scale (estimate ~1300 units/yr, 2009 to about 20,000 units/yr in 2014)
- About 19% cost reduction estimated based on publically announced design and performance improvements; about 20% cost reduction attributed to other factors.
- These three factors give the observed 50% cost reduction from 2009-2013.

٠

Cost Modeling Comparison –10kW Low Temp. PEM CHP

Source	Year	System Size and Annual Production Volume	Pt Loading (mg/cm ²)	Stack Direct Manufacturing Cost (\$/kW)	Yield	CHP Direct System Cost (\$/kW)
Manhattan Project	2011	10kW, 5000 units/yr.	0.5	\$850 \$480	60% 80%	Na
Strategic Analysis	2012	10kW, 5000 units/yr.	0.4	\$370	99%	~\$2100
This Work	2016	10kW, 5000 units/yr.	0.5	\$860 \$600 \$450	60% 80% 99%	\$2800 \$2550 \$2400

FC Backup Power Capital Cost vs. Price Quote in NREL 2014 Report

- 5kW system cost model ~\$6000/kW at low production volume comparable to capital cost at \$5700/kW in NREL 2014
- Increasing annual production volume to > 1000 units reduces price about 50%

Total system cost data from California Self-Generation Incentive Program (SGIP)

Cumulative Power [kW]

SOFC Installed Price MCFC/ PAFC Installed Price 100000 100000 Molten Carbonate FC Total Eligible Cost / kW (2010\$) Phosphoric Acid FC Power (Molten Carbonate FC) Power (Phosphoric Acid FC) Cost in \$/kW **Cost in /kW** 00001 10000 $v = 40068x^{-0.2}$ $R^2 = 0.24$ $v = 13020x^{-0.056}$ $R^2 = 0.027$ 1000 1000 100 1,000 10,000 100,000 100 1000 10000 100000 Cumulative Power [kW]

- Cost reduction not seen in CA SGIP database
- SOFC: Estimate annual volume of hundreds of units per year (40-50kW modules)
 - Difficult to estimate system manufacturing cost without further information ٠
 - Possibly much higher cost than LBNL and other cost models ٠
 - Due to lower automation, lower yield, material costs, "engineering" labor costs?

EXTERNAL VALUATION MODELING

AWRENCE BERKELEY NATIONAL LABORATORY

Quantifying human health damages

AWRENCE BERKELEY NATIONAL LABORATORY

Marginal benefits of abatement valuation from AP2 model and updated eGRID subregion emission factors

50kW small hotel CHP example shown (LT PEM)

Overall externality benefits

Health and Environmental Savings

LAWRENCE BERKELEY NATIONAL LABORATORY

NERC region vs eGRID subregional CO2, criterion pollutant emission rates

.....

Earlier work used marginal emission factors by NERC region. This year, eGRID subregional emission rates are utilized for improved spatial resolution Note: More than a factor of 2X between regional CO2 emission rates

Levelized cost of electricity with TCO credits

 Example of 50kW LT PEM CHP in hotel at \$2900/kWe installed cost (2000 units annual production)

LCOE with TCO Credits

LAWRENCE BERKELEY NATIONAL LABORATORY

EPA Clean Power Plan to 2030 – Cleaner grid electricity will reduce benefits from fuel cell CHP

- CPP: Improve emissions from coal plants and shift from coal to natural gas Build more renewable sources of electricity
- How will these changes impact the externality benefits of fuel cell CHP? (Previous slide was for 2012 base year)

Estimated Clean Power Plan impacts for six representative regions

		kg/MWH		kg/MWh		% Reduction 2030 from 2012				
	EGRID				2030 Pr	ojection wi	th Clean			
City	subregion	EGRID for	2012, relea	ased 10/15		Power Plan				
		CO2 AEF	SO2 AEF	NOx AEF						
		eGRID	eGRID	eGRID	CO2 AEF	SO2 AEF	NOx AEF	CO2	SO2	NOx
Minneap.	MROW	646	1.33	0.73	489	0.25	0.45	24%	81%	38%
NYC	NYCW	316	0.03	0.15	322	0.00	0.05	-2%	97%	64%
Chicago	RFCW	626	1.54	0.55	510	0.40	0.34	19%	74%	37%
Houston	ERCT	518	0.87	0.28	440	0.09	0.11	15%	90%	61%
Phoenix	AZNM	523	0.20	0.59	459	0.07	0.30	12%	64%	50%
S. Diego	CAMX	295	0.09	0.15	259	0.03	0.08	12%	62%	46%
Average								13%	78%	49%

- Average reductions (in average emission factors)
- ~13% reduction in CO2
- ~80% average reduction in SO₂ tons/kWh 2012-2025
- ~50% average reduction in NOx tons/kWh 2012-2025

Notional Cash Flow example – Fixed marginal emission factors, escalating social cost of CO2

- 50kW LT PEM CHP in small hotel in Chicago 2016-2030, with
 - (1) No reduction in MEFs assumed
 - (2) escalating social cost of carbon at 3% discount rate
- Not a real cash flow, but including private costs and public benefits
- Installed cost of \$2900/kWe assumed; NPV(societal)=0 at \$5700/kWe installed cost

FCS vs Grid, No Externalities

Private costs: Not favorable to owner

For society, cash positive investment

AWRENCE BERKELEY NATIONAL LABORATORY

FCS vs Grid, Including Externalities

Notional Cash Flow example – reduction in marginal emission factors, escalating social cost of CO2

- 50kW LT PEM CHP in small hotel in Chicago 2016-2030, with
 - (1) Reduction in MEFs tracking estimated reduction in AEF assumed
 - (2) escalating social cost of carbon at 3% discount rate
- Not a real cash flow, but including private costs and public benefits ٠
- Installed cost of \$2900/kWe assumed; NPV(societal)=0 at \$3850/kWe installed cost ٠

FCS vs Grid, No Externalities

Private costs: Not favorable to owner

For society, cash positive investment

These last two figs. on lower right are "bounding cases" for this building case – no change in MEF to full changes from AEF in CPP

Conclusions

- Stack, system costs for PEM to \$220/kW, \$900/kW at hi-volume
- Stack, system costs for SOFC to \$170/kW, \$600/kW at hi-volume
- For CHP systems, BOP costs higher than stack costs for the manufacturing assumptions here
- Modeled price comparisons within range to PEM prices for Japan micro-CHP and backup power, but SOFC harder to compare
- Including externalities, FC CHP economic applicability identified for a subset of commercial buildings in some regions of country with high carbon intensity electricity from grid
- Spatial dependency of externality benefits suggests regional incentives tied to grid electricity and heating fuel type may be appropriate

LT PEM Report (updated report to be posted soon):

<u>https://eetd.lbl.gov/publications/a-total-cost-of-ownership-model-for-l</u>

SOFC Report:

 http://energy.gov/sites/prod/files/2016/06/f32/fcto_ lbnl_total_cost_ownership_sofc_systems.pdf

Funding and support of this work by the U.S. Department of Energy, Fuel Cells Technologies Office is gratefully acknowledged.

Thanks also to:

Brian Borglum, Fuel Cell Energy; SolidPower, Mezzolombardo, Italy; Minh Nguyen, University of California, San Diego; Professor Massimo Santarelli, Polytechnic University of Turin, Italy; Professor Jack Brouwer, University of California, Irvine; Patricia Irving, InnovaTek; Jim W. Dennis, HED international, Inc.; Dixita Bhat, Bionics Scientific Technologies Pvt. Ltd.; Mathias Rachau, FuelCon AG; Alexey Peshkovsky, Industrial Sonomechanics, LLC; Martin De Moya, Haiku Tech, Inc.; Edward Stone, Manncorp; Charles H. Birks, Keith Company; Fabio Pagnotta, Aurel Automation S.p.A; Donald Wang, Ph.D., Inframat Advanced Materials; Nickle Shang, Qingdao Terio Corporation; Dick Wildman, Dowd and Guild Inc.; Chris Betz, CHEMPOINT Inc.; Matthew Dickerson, American Chemical Inc.; Christian Ames, Univar USA

Question and Answer

 Please type your questions into the question box

File View Help	_ - N ×	
 - Audio		
Telephone		
Mic & Speakers		
Dial: +1 (80	5) 309-0021	
Access Code: 558-06 Audio PIN: 24	50-339	
If you're already on the call of	ress #24# now.	
Questions	5	
	~	
	~	
[Enter a question for staff]		
	Send	
Webinar Nov Webinar ID: 664-97	v 3-082	
GoTo Webi	nar	

Thank you

Donna Ho Donna.Ho@ee.doe.gov Max Wei mwei@lbl.gov

hydrogenandfuelcells.energy.gov

AWRENCE BERKELEY NATIONAL LABORATORY

Total Cost of Ownership Modeling for Stationary Fuel Cell Systems

Department of Energy Fuel Cell Technologies Office Webinar Washington, D.C. December 13, 2016

Max Wei (mwei@lbl.gov) Lawrence Berkeley National Laboratory

LAWRENCE BERKELEY NATIONAL LABORATORY

Back-Up Slides

AWRENCE BERKELEY NATIONAL LABORATORY

Global DFMA Costing assumptions

Parameter	Symbol	Value	Units	Comments
Operating hours	tha	varies	Hours	8 hours base shift; (2-3 shifts per day)
Annual Operating Days	t _{dy}	240	Days	52wks*5days/wk-10 vacation days-10 holidays
Avg. Inflation Rate	j	0.023		US avg, for past 10 years (Phillips, 2008)
Avg. Mortgage Rate	Ĵm	0.051		(Trading Economics , 2015)
Discount Rate	Ĵa	0.1		
Energy Inflation Rate	j _e	0.056		US avg of last 3 years (Phillips, 2008)
Income Tax	i _i	0		No net income
Property Tax	i _p	0.01035		US avg from 2007 (Tax-rates.org, 2015)
Assessed Value	iav	0.4		
Salvage Tax	i _s	0.5		
EOL Salvage Value	k _{eol}	0.02		Assume 2% of end-of-life value
Tool Lifetime	T_t	15	Years	Typical value in practice
Energy Tax Credits	ITC	0	Dollars	
Energy Cost	C _e	0.1	\$/kWhe	e.g., the cost of electricity in the industrial sector was \$0.109/kWhe in New England, and \$0.102/kWhe in the Pacific contiguous states in October 2014 (https://www.eia.gov/electricity/ monthlv/epm_table_grapher.cfm?t= epmt 5_6_a, accessed 29 December 2015))
Floor space Cost	c _{fs}	1291	\$/m²	US average for factory (Selinger, 2011)
Building Depreciation	j _{br}	0.031		BEA rates (U.S. Department of commerce, 2015)
Building Recovery	T _{br}	31	Years	BEA rates (U.S. Department of commerce, 2015)
Building Footprint	abr	Varies	m ²	
Line Speed	V ₁	Varies	m/min	
Hourly Labor Cost	Clabor	29.81	\$/hr	Hourly wage per worker

-fiii)

LAE

REPKELEV

SOFC Functional specs – common properties

		Fuel Type:	Pipeline Natural Gas
Common properties:	Near-Term	<u>Future</u>	<u>Unit</u>
System life	15	20	years
Stack life	24000	40000	hours
Reformer life (if app.)	5	10	years
Compressor/blower life	7.5	10	years
WTM sub-system life	7.5	10	years
Battery/startup system			
life	7.5	10	years
Turndown % (>50 kW)	0	25	percent
Turndown % (<50 kW)	25	50	percent
Expected Availability	96	98	percent
Stack cooling strategy	Air+off gas	Air+off gas	cooling

SOFC Materials Prices: Updates from 2015 to lower prices at high volumes

Table 4.4. Anode-supported cell material prices					
Vendor/Country	Material	Order quantity (kg)	Price (\$/kg)	Comments	
AIICHI JITSUGYO	Nickel Oxide	1000	68.5	CIF USA by sea	
(Japan)		5000	42.5	CIF USA by sea	
		10000	37	CIF USA by sea	
		20000	34	CIF USA by sea	
AIICHI JITSUGYO	8YSZ	100	78	CIF USA by sea	
(Japan)	(8mol%YSZ)	1000	68	CIF USA by sea	
		5000	63	CIF USA by sea	
Daiichi (Japan)	8YSZ	10	97	CIF USA by sea	
	(8mol%YSZ)	100	95	CIF USA by air	
		1000	83	CIF USA by sea	
Inframat Advanced	8YSZ (8mol%YSZ)	1	139.2	by rail or truck	
Materials (USA)		5	115.8	by rail or truck	
		10	94.5	by rail or truck	
		50	71.6	by rail or truck	
		100	49.7	by rail or truck	
		1000	35.2	by rail or truck	
		10000	29.8	by rail or truck	
Inframat Advanced	LSM powder	100	170	by rail or truck	
Materials (USA)		1000	95	by rail or truck	
		10000	70	by rail or truck	
Qingdao Terio	LSM powder	10	250	CIF USA by air	
Corporation		100	150	CIF USA by air	
(China)		200	125	CIF USA by air	
		500	105	CIF USA by air	
		1000	80	CIF USA by air	
		2000	75	CIF USA by air	
	\subset	5000	60	CIF USA by air	

CIF = price including cost, insurance and freight

Key updates from 2015:

8YSZ price

50% lower at high volume (\$60/kg 2015 value to \$29.80/kg)

LSM powder price

60% lower price at high volume (\$150/kg value to \$60/kg)

SOFC Binders, platicizers, pore formers and solvent prices

	$\stackrel{\wedge}{\blacksquare}$
BERKELEY LAB	U

Table 4.5. Binders, plasticizers,	pore formers and solvents prices
-----------------------------------	----------------------------------

Vendor/Country	Material	Order quantity (kg)	Price (\$/kg)	Comments
Jiangsu	N-butyl	100	4.34	CIF USA by sea
Xiangcanghongrun	acetate 99,5%	1000	1.516	CIF USA by sea
(China)		10000	1.29	CIF USA by sea
ChemPoint Inc (USA)	Methocel A4M	1-45400	18,5-29,6	CIF price
Dowd & Guild, Inc.	Butvar B-76	63.5	23.37	by rail or truck
(CA)		200	21.42	by rail or truck
		500	19.47	by rail or truck
		1000	18.36	by rail or truck
		2000	17.14	by rail or truck
		5000	16.07	by rail or truck
Univar USA	Santicizer 160	Contact Ui	nivar USA for quote	a current price
Cancarb Limited (USA)	Thermax® N990 Thermal Carbon Black	Contact Cancarb for a current price quote		
Jinan Shijitongda	2-	1000	3.07	CIF USA
Chemical Co., Ltd. (China)	Butoxyethanol	10000	3.07	CIF USA
(china)		100000	2.53	CIF USA
		1000000	2.32	CIF USA
		10000000	2.29	CIF USA

CIF = price including cost, insurance and freight

SOFC Yield Assumptions Updated from 2015

Process Yield assumptions for 2015 AMR

FC Size (kW)	10	10	10	10
Annual Production				
Volume	100	1,000	10,000	50,000
EEA Yield	95.00%	96.00%	97.00%	98.00%
Interconnect & Frame	85.00%	85.65%	92.67%	97.91%
Seal	85.00%	85.77%	92.79%	98.04%
Assembly	99.5%	99.5%	99.5%	99.5%
Stack Average Yield	89.8%	90.3%	95.0%	98.5%

FC Size (kW)	50	50	50	50
Annual Production				
Volume	100	1,000	10,000	50,000
EEA Yield	96.00%	97.00%	98.00%	99.00%
Interconnect & Frame	85.00%	90.50%	97.91%	99.50%
Seal	85.00%	90.62%	98.04%	99.50%
Assembly	99.5%	99.5%	99.5%	99.5%
Stack Average Yield	89.8%	93.5%	98.5%	99.5%

Updated EEA process parameter assumptions

Power	Systems/year	Process Yield	Availability	Line
		(%)	(%)	Performance
				(%)
1	100	85.00%	80.00%	89.00%
	1,000	88.00%	80.00%	89.00%
	10,000	91.00%	80.79%	95.00%
	50,000	92.00%	85.79%	95.00%
10	100	88.00%	80.00%	89.00%
	1,000	91.00%	80.79%	95.00%
	10,000	92.00%	88.04%	95.00%
	50,000	93.00%	93.49%	95.00%
50	100	90.00%	80.00%	89.00%
	1,000	92.00%	85.79%	95.00%
	10,000	93.00%	93.49%	95.00%
	50,000	94.00%	95.00%	95.00%
100	100	91.00%	80.79%	95.00%
	1,000	92.00%	88.04%	95.00%
	10,000	94.00%	95.00%	95.00%
	50,000	95.00%	95.00%	95.00%
250	100	91.00%	83.60%	95.00%
	1,000	93.00%	91.10%	95.00%
	10,000	94.00%	95.00%	95.00%
	50,000	95.00%	95.00%	95.00%

• Versa power reported yield numbers >95% for EEA[‡]

[‡] B. P. Borglum. Development of Solid Oxide Fuel Cells at Versa Power Systems. ECS Transactions, 17 (1) 9-13 (2009)

SOFC – LBNL 2015 vs SA 2012

At higher volume and power levels ≥ 25kW, and annual volume ≥ 1000 units/yr, agreement within 20% and within ~10% at very high volume

rrrr

REDKELEN

• At lower volume LBNL is 2-3X more - due to higher capital costs

LAWRENCE BERKELEY NATIONAL LABORATORY

Schematic Diagram of EEA Casting Line (SOFC)

rrrrr

BERKELEY

LAE

Air Pollution Emissions Experiments and policy Analysis Model (APEEP and APE)

- Focus on ambient concentrations of PM_{2.5} and O₃ (dominant health and environmental externalities)
- Model adopted by U.S. National Academy of Sciences for "Hidden Cost of Energy" study (2010)

Emission factors, damage functions differ over geographical region

• From state, subregion, NERC region, to EPA region

USEPA eGRID2012

Three Large Regions for damages in EPA Clean Power Plan Analysis, 2015

LAWRENCE BERKELEY NATIONAL LABORATORY

Marginal benefits of abatement valuation for APEEP and AP2 (APEEP2) model

50kW small hotel CHP example shown (LT PEM)

0.140 (\$/kwh) 0.120 0.100 Savings 0.080 APEEP NERC region. Health, Environmental ŧ 0.060 Savings (\$/kWh) Environme 0.040 AP2 NERC region, Health, Environmental Savings 0.020 (\$/kWh) Health, 0.000 Phoenit HOUSTON Average

AP2: Health, Environmental benefits are increased by a factor of 3-5X over previous APEEP estimates

New marginal benefits of abatement are more commensurate with latest estimates from the EPA.

eGRID emission rates vs NERC-level MEF: reasonable CO2 agreement but local differences in SO2, NOX

.....

BERKELEY

- For each pair- first bar is larger NERC region (Old value); 2nd bar eGRID sub-region (updated value)
- Reasonably matched except: SOX much lower in NYC; SOX much higher in Texas (ERCT)

Cost of Energy Service with FC CHP

Notional Cash Flow example – Fixed marginal emission factors, escalating social cost of CO2

- 50kW LT PEM CHP in small hotel in Minneapolis 2016-2030, with
 - (1) No reduction in MEFs assumed
 - (2) escalating social cost of carbon at 3% discount rate
- Not a real cash flow, but including private costs and public benefits
- Installed cost of \$2900/kWe assumed; NPV(societal)=0 at \$7200/kWe installed cost

Private costs: Not favorable to owner

FCS vs Grid, No Externalities

FCS vs Grid, Including Externalities

For society, cash positive investment

Notional Cash Flow example – reduction in marginal emission factors, escalating social cost of CO2

- 50kW LT PEM CHP in small hotel in Minneapolis 2016-2030, with
 - (1) Reduction in MEFs tracking estimated reduction in AEF assumed
 - (2) escalating social cost of carbon at 3% discount rate
- Not a real cash flow, but including private costs and public benefits
- Installed cost of \$2900/kWe assumed; NPV(societal)=0 at \$5900/kWe installed cost

Private costs: Not favorable to owner

For society, cash positive investment

rrrr

These last two figs. on lower right are "bounding cases" for this building case – no change in MEF to full changes from AEF in CPP

Social Cost of carbon, EPA Clean Power Plan

 Clean Power Plan Regulatory Impact Analysis, Oct. 2015 – we take 3% DR values for 2015, 2025, 2030

Disc. Rate=>	5% avg	3% avg	2.5% avg	3% (95th %- tile)
2015	\$13	\$41	\$63	\$116
2020	\$14	\$46	\$70	\$139
2025	\$15	\$51	\$75	\$151
2030	\$17	\$56	\$81	\$174
2035	\$20	\$61	\$87	\$186
2040	\$23	\$67	\$94	\$209
2045	\$26	\$72	\$100	\$220
2050	\$29	\$77	\$106	\$232

Social Cost of CO2, 2015-2050 (2014\$ per tonne)