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Energy System Challenge - Sustainability

* Multi-sector requirements

o Transportation Over half of U.S. CO,
o Industrial emissions come from
o Grid the industrial and

transportation sectors

* Decarbonization has limited options
o Renewables, Nuclear, and CCS
o Intense electrification or carbon-neutral fuels



Changing Landscape

eEnvironmental Impacts
ePolicy (RPS, ZEV)

German Government Votes to Ban Internal
Combustion Engines by 2030

The German Bundesrat has voted to ban new gasoline- or diesel-powered vehicles from EU
roads starting in 2030.

By Bob Sorokanich Oct 8, 2016

The New
Nissan Pathfinder

http://www.roadandtrack.com/new-cars/future-cars/news/a31097/german-
government-votes-to-ban-internal-combustion-engines-by-2030/



http://www.roadandtrack.com/author/3028/bob-sorokanich/

Carbon-free electricity prices
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Renewable Challenges

Denholm et al. 2008
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Limitations of Mismatched Load/Generation

Denholm, P.; M. O'Connell; G. Brinkman; J. Jorgenson (2015) Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart. NREL/TP-6A20-65023
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Curtailment will lead to an abundance of low value electrons, and we need
solutions that will service our multi-sector demands




Example: Germany already limiting RE penetration rate

Share of Renewable Electricity

at Brut Electricity Consumption (Energy) in Germany

100.00%

90.00% —+—

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

H Wind

Photovoltaic
M Biomass
 Hydro
B Geothermal

Yearly Increase according to Legislation 2014:

—» 2,5 GW Wind onshore
— 2,5 GW Wind offshore

» 2.5 GW Photovoltaic

Long term target:
2050: 80 %

i
F
#

Uncontrolled Increase resulting

" L /
‘ i 2025:

from Subsidy System till 2014:

[ 40-45%

Source: BMWI



* Dwight D. Eisenhower

"If you can't solve a
problem, enlarge it"



Conceptual H, at Scale Energy System*

Value Added
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*Illustrative example, not comprehensive



Current Energy Flow - w/Hydrogen

2014 Estimated U.S. Annual Energy Use - - Iﬁa\{\_frentlzﬂ.ti)ventnore
Hydrogen Contributions Broken Out ~ 98 Quads duonal Laborawory
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Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory
analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.



BAU;..cesnu VS. High H, — Energy Difference*

Energy Use difference between 2050 high-H, and AEO 2040 scenarios (Quad Btu)

Red flows represent a reduction (between scenarios)
Black flows represent an increase (between scenarios)
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Ltg Lawrence Livermore
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* Only differences >1.5 quad shown for clarity purposes, case study data and other disclaimers included elsewhere



BAU e VS. High H, — CO, Difference*

Emissions difference between 2050 high-H, and AEO 2040 scenarios (million MT)

Red flows represent a reduction (between scenarios)
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~ 45% reduction in CO, emissions
Grid 75%, Transportation 25%, Industrial 25%




Improving the Economics of Renewable H,

Intermittent
integration
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What is needed to achieve H, at Scale?

Low and High Temperature
H, Generation

H, Storage and
Distribution

Development
of low cost,
durable, and
intermittent H,
generation.

Development of
thermally
integrated, low
cost, durable,
and variable H,
generation.

Development of
safe, reliable,
and economic

storage and
distribution
systems.

H, as game-
changing energy
carrier,
revolutionizing
energy sectors.

Analysis

Foundational Science

Future Electrical Grid




H, at Scale Value Summary

 Reducing emissions across sectors (GHG, criteria
pollutants)

e Support needs of future energy system

Unique potential of H, to
positively impact all these areas

e Other benefits
— Energy security '
(diversity/resiliency/domestic) Multiple

— Manufacturing competitiveness/ energy '

job creation sectors
— Decreased water requirements



What does success look like?

H, Million Metric Tons
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* Back up slides



Conceptual H, at Scale Energy System*

Value Added
Applications
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H, at Scale Big Idea Teams/Acknowledgement

H2@Scale has moved beyond
this National Lab team to
include DOE offices, and
industrial/other stakeholders.
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Stakeholder Groups

Value Added
Applications

* Nuclear

* Wind \ @
e Solar
» Grid/Utilities W oo (IR
* Regulators

* Electrolysis
* Industrial Gas @ b ot e
* Auto OEMs/supply chain cwwecsirons w
* Fuels Production (Big Oil, Biomass)
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H, at Scale Roadmap

duce intermittent H,
production capital to $300/kW
($3-8/kg H,)



Current Energy Flow

Estimated U.S. Energy Use in 2014: ~98.3 Quads \ hg\{}l;%g(l:i;.é\gﬁrarpoor;e
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Source: LLNL 2015. Data is based on DOE/EIA-0035(2015-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore Naticnal Laboratory
and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports
consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production
is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80%
for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527



Energy Flow 2040 Business as Usual

2040 EIA AEO Estimated U.S. Annual Energy Use - L IﬂawrentI:eL Ll;vennore
Hydrogen Contributions Broken Out ~ 108 Quads ational Laboratory
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Source: LLNL March 2016. Data is based on DCE/EIA-0035(2015-03) and Annual Energy Cutlook DOE/EIA-0383(2014). If this information or a reproduction of it is used, credit must be given to the Lawrence
Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation.
EIA reports consumption of renewable resources (i.e., hydro, wind, gecthermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate". The efficiency of
electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential

sector, 65% for the commercial sector, 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-676387

Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory
analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.



Energy Flows — 2050 High RE/H,

2050 Estimated U.S. Annual Energy Use with High Hydrogen ENERGY
Contributions Broken Out ~ 77 Quads
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Source: LLNL September 2015. Data is based on High Hydrogen Estimations and DOE/EIA-0383(2014). If this information or a reproducticn of it is used, credit must be given to the Lawrence Livermore National
Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports
consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate"™. The efficiency of electricity

production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as €5% for the residential sector, 65% for
the commercial sector, B0% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-§76987

Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory
analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.



Investments to Enable H, at Scale

R&D Impact on Fuel Cell Costs

Projected Transportation Fuel Cell System Cost
at high-volume (500,000 units per year)

~ $2751
$280 | "l
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Data from FCTO AMR presentations.
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