H2 at Scale:

Enhance the U.S. energy portfolio through sustainable use of domestic resources, improvements in infrastructure, and increase in grid resiliency.

NREL Workshop

November 16, 2016

Presented by Bryan Pivovar National Renewable Energy Lab bryan.pivovar@nrel.gov

H2@Scale webinar available at

http://energy.gov/eere/fuelcells/downloads/h2-scale-potential-opportunity-webinar

Beijing 2016

Pittsburgh Today

http://www.pittsburghmagazine.com/Best-of-the-Burgh-Blogs/The-412/August-2013/This-is-What-Pittsburgh-Looked-Like-at-Noon-73-Years-Ago/

Energy System Challenge - Sustainability

• Multi-sector requirements

- Transportation
- Industrial
- \circ Grid

Over half of U.S. CO₂ emissions come from the industrial and transportation sectors

Decarbonization has limited options

- Renewables, Nuclear, and CCS
- Intense electrification or carbon-neutral fuels

Changing Landscape

Environmental Impacts

• Policy (RPS, ZEV)

German Government Votes to Ban Internal Combustion Engines by 2030

The German Bundesrat has voted to ban new gasoline- or diesel-powered vehicles from EU roads starting in 2030.

By Bob Sorokanich

Oct 8, 2016

http://www.roadandtrack.com/new-cars/future-cars/news/a31097/germangovernment-votes-to-ban-internal-combustion-engines-by-2030/

Carbon-free electricity prices

Source: (Arun Majumdar) 1. DOE EERE Sunshot Q1'15 Report, 2. DOE EERE Wind Report, 2015

Renewable Challenges

Denholm et al. 2008

Limitations of Mismatched Load/Generation

Denholm, P.; M. O'Connell; G. Brinkman; J. Jorgenson (2015) Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart. NREL/TP-6A20-65023

Curtailment will lead to an abundance of low value electrons, and we need solutions that will service our multi-sector demands

Example: Germany already limiting RE penetration rate

Share of Renewable Electricity

Source: BMWi

Dwight D. Eisenhower

"If you can't solve a problem, enlarge it"

Conceptual H₂ at Scale Energy System*

*Illustrative example, not comprehensive

Current Energy Flow – w/Hydrogen

Source: LINL September 2015. Data is based on DOE/EIA-0035(2015-03) and Annual Energy Outlook DOE/EIA-0383(2014). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auguices the work was performed. Distributed electricity represents only retail electricity sales and does not include salf-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTD-equivalent values by assuming a typical fossi if uel plant "heat rate". The efficiency of electricity production is colculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 55% for the remidential ecotor, 65% for the commercial sector, 80% for the industrial sector, and 21% for the transportation sector. Totale may not equal aum of components due to independent rounding. LINZ-MI-676987

Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.

BAU_(Business As Usual) vs. High H₂ – Energy Difference*

Energy Use difference between 2050 high-H₂ and AEO 2040 scenarios (Quad Btu)

Red flows represent a reduction (between scenarios) Black flows represent an increase (between scenarios)

* Only differences >1.5 quad shown for clarity purposes, case study data and other disclaimers included elsewhere

BAU_(Business As Usual)**vs.** High H₂ – CO₂ Difference*

Emissions difference between 2050 high-H₂ and AEO 2040 scenarios (million MT)

Red flows represent a reduction (between scenarios)

Improving the Economics of Renewable H₂

What is needed to achieve H₂ at Scale?

H₂ at Scale Value Summary

- Reducing emissions across sectors (GHG, criteria pollutants)
- Support needs of future energy system

Unique potential of H₂ to positively impact all these areas

- Other benefits
 - Energy security (diversity/resiliency/domestic)
 - Manufacturing competitiveness/ job creation
 - Decreased water requirements

What does success look like?

Going from 10 million MT of H₂ from SMR to million MT from carbonfree sources, will enable a % decrease in CO₂ emissions by 20 • Back up slides

Conceptual H₂ at Scale Energy System*

*Illustrative example, not comprehensive

H₂ at Scale Big Idea Teams/Acknowledgement

- Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE)
 - Fuel Cell Technologies Office
 - Transportation Working Group
- Office of Nuclear Energy
- Office of Electricity Delivery and Energy Reliability
- Engagement with
 - Office of Fossil Energy
 - Office of Science

Stakeholder Groups

- Nuclear
- Wind
- Solar
- Grid/Utilities
- Regulators
- Electrolysis
- Industrial Gas
- Auto OEMs/supply chain
- Fuels Production (Big Oil, Biomass)
- Metals/Steel
- Ammonia
- Analysis
- Investors

H₂ at Scale Roadmap

				6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
				6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
				• • • • • • • • • • • • • • • • • • •
				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				• • • • • • • • • • • • • • • • • • •
			- - - - - - - - - - - - - - - - - - -	- 8 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9
duce interm	hittent H_2			6 6 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7
production capital to (\$3	-8/kg H ₂)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			5 6 7 8 8 8	

Current Energy Flow

Source: LLNL 2015. Data is based on DOE/EIA-0035(2015-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity elevered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

Energy Flow 2040 Business as Usual

ElA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in STU-equivalent values by assuming a typical fossil fuel plant "heat rate". The efficiency of electricity production is calculated as the total retail electricity divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential sector, 65% for the components due to independent rounding. LLNL-Mi-G76987

Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.

Energy Flows – 2050 High RE/H₂

Source: LAML September 2015. Data is based on High Hydrogen Estimations and DDE/EIA-0383(2014). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTD-equivalent values by assuming a typical fossil fuel plant "hear rate". The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electric. Totals may not equal sum of components due to independent rounding. LINL-MI-676987

Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.

Investments to Enable H₂ at Scale

Data from FCTO AMR presentations.