

Energy Efficiency & ENERGY **Renewable Energy**

U.S. DEPARTMENT OF

University of Miami, Schneider Electric, Lawrence Berkeley National Laboratory Wangda Zuo, Assistant Professor

Team

Wangda Zuo (PI), University of Miami

Michael Wetter, (Co-PI), Lawrence Berkeley National Laboratory

James VanGilder (Co-PI), Schneider Electric

Energy Efficiency & Renewable Energy

Challenges:

Data centers in the US use about 2% of the electricity consumed in the nation and about half of this energy is used for cooling.

Vision:

At a target level of performance (**30% saving** in cooling energy), a nationwide adoption of this tool will potentially reduce annual electricity usage by **21 billion kWh** and save about **\$2.2 billion**. The target market size is estimated to be about **\$593 million** in 2020.

Technology Solution

Advantage, Differentiation, and Impact

Validation and Demonstration at Two Different Data Centers

- University of Miami Data Center: Chilled Water and DX Coil
- University of Massachusetts Medical School Data Center: AHU with Air Side Economizer

Flexible Packages

- Each package can be used individually
- Modelica Buildings library → Spawn-of-EnergyPlus → OpenStudio

Energy Efficiency & Renewable Energy

Thank You

University of Miami Schneider Electric Lawrence Berkeley National Laboratory

Wangda Zuo, Assistant Professor

Energy Efficiency & Renewable Energy