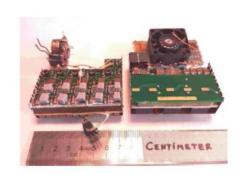
https://littleboxchallenge.com/

Red Devils
Schneider
VT – Future Energy

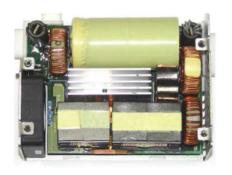
LITTLE BOX CHALLENGE

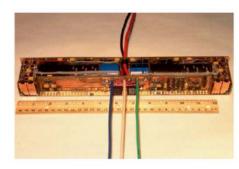
In mid July, we got our first inverter entry

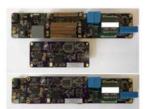
then we had 2

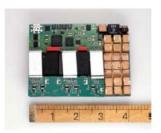




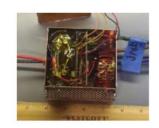


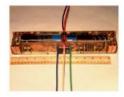


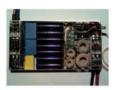














- > 2000 teams registered
- > 100 applications for grants
- > 100 testing applications
- > 30 reviewers

Lowest Power Density Claimed: 50 W/in³

Highest Power Density Claimed: 5220 W/in³

Other Organizations Attending Today

LITTLE BOX CHALLENGE

Breakfast and preliminary drop off of inverters
Opening comments by Google, IEEE and NREL
Presentations from teams 1-6 and Q&A
Break
Presentations from teams 7-12 and Q&A
Lunch and tour of ESIF
Presentations from teams 13-18 and Q&A
Break
Reception (free time to socialize in the meeting room) and formal drop off of inverters

Group 1

1	Helios
2	LBC1
3	Future Energy Electronics
4	OKE-Services
5	Fraunhofer IISB
6	Red Electrical Devils

Group 2

7	Energylayer
8	Rompower
9	Cambridge Active Magnetics
10	Schneider Electric Team
11	AMR
12	The University of Tennessee

Group 3

13	AHED
14	Tommasi - Bailly
15	Adiabatic Logic
16	UIUC Pilawa Group
17	!verter
18	Venderbosch

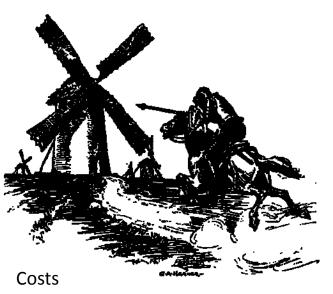
Enabling High-Penetration Solar PV through Next-Generation Power Electronic Technologies

- Workshop -

10/12/2016

Leo F. Casey, ScD leocasey@google.com

DG(PV), Storage, Grids & Power Electronics



The Narrative we present -- Overview

- Grid(s), are changing, it was metamorphosis, now transformation? Physical layer? Grid Modernization? Instability on many fronts.
- Costs, standards, prices, complexity
- Role for Grid Electronics, power electronics can be transformative, examples
- Limitations, Devices, thermals, developments/trends
- Tipping point? Killer applications?
- Grid electronics typically at the edge (interfaces/parallel, vs series devices ... challenging)
- Grid Connected PE vs Grid Controlling PE
- Discuss these points/issues using examples: Inverters for Renewables, μGrid switches, Solid State Transformers, voltage controllers

Efficiency

~density

Reliability/Resiliency

Power Quality

Barriers

AHJ?

Renewables/DG IEEE1547, NFPA70 (NEC) Article 690

Bulk -- FERC 661

Ride-thru, islanding, reverse power flow, voltage control, reliability, transient suppression, voltage range on dc side (active clamps?)

Electricity:

- -How we make it
- -How we move it
- -How we use it
- -role of electronics
- -rugged, reliable, outdoor
- -modularity
- -density? Easier when small

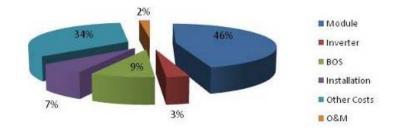
Systems:

-storage integration (dc coupled), sw. bd rating, choices

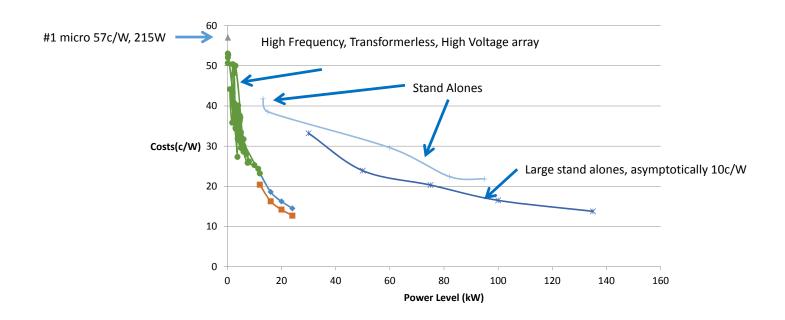
-uGrids

-BOS

Barriers to High Penetration of Renewables


~2004 DOE/NREL

1. Cost


- Panels
- Inverters, BOS
- 0&M
- 2. Controllability

- 4. Utility Industry Acceptance/Adoption
 - Scale
 - Performance
 - Standards
 - Familiarity (interconnection, protection)

Inverter Cost Comparisons

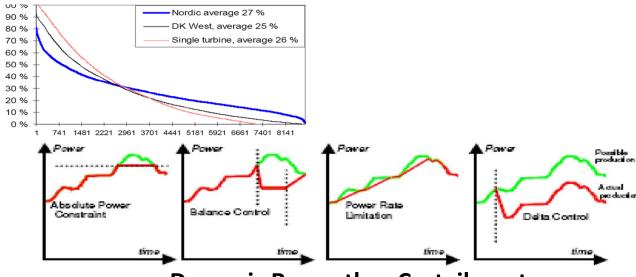
Controllability allows Increasing Penetration of Renewables, BUT, still Intermittency concerns (bulk and distributed)

Denmark

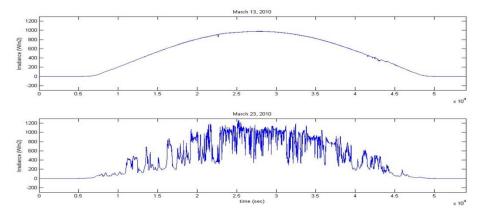
- •42% of Electrical Energy, lots of spatial averaging -->
- •New Control Regs.
- •European Grid
- •Curtailment and dynamic range

New Zealand

- •80% + renewables
- •Hydro, geothermal, wind
- Curtailment


Lanai

- •20% PV in diesel grid
- •no storage but heavily curtailed
- •35% of peak with storage
- •Ramp rates, curtailment, remote control, site controller, VARs, ride-thru (CPUC SIWG features)


SCE

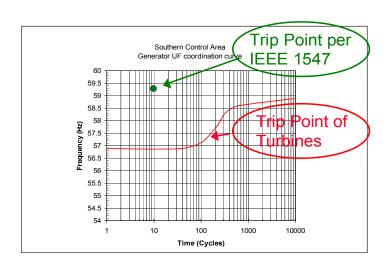
- 40-60% on individual feeders (but where on the feeder?)
- c.f. Hawaii 20% on individual feeders (backfeed concerns)

Studies, NREL east and west, 10-30%, no storage, ramp Coal EU15, DisPower Study, 15-35%

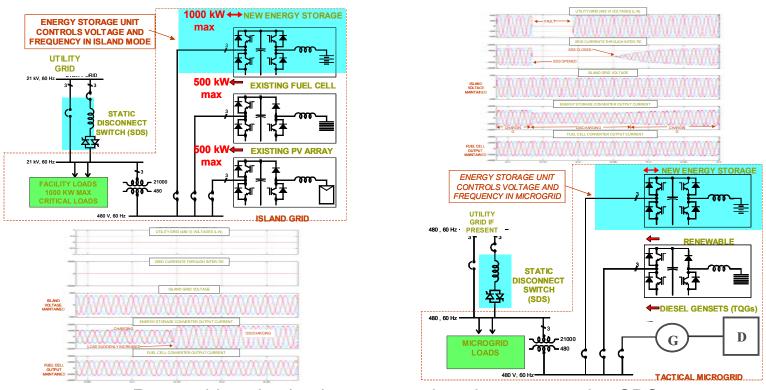
Dynamic Range thru Curtailment

Multi-MW Platform

- 1 to 2 MW integrated medium voltage PV solution (4.2kV 69kV)
- Single skid combines and integrates inverter, MV transformer, MV fuse and disconnect, AC breaker, EMI filter, AC switch, DC switch, and DC fused combiner
- Ships as single skid, fully tested
- System mass (including MV transformer) ~ 30,000 lbs.



- 1) The current EQX250KW (CSA certification) with transformer selling to Makani is US\$39K.
- 2) EQX500KW (CSA certification) without transformer is selling at US\$45K
- 3) EQX1000KW (CSA certification) without Transformer is selling at US\$58K
- 4) EQX1000KW (CQC certification) without Transformer is selling at US\$44K.
- 5) EQMX1000KW (CQC certification) without transformer is selling at US\$39K with LS Breaker and Contactor.

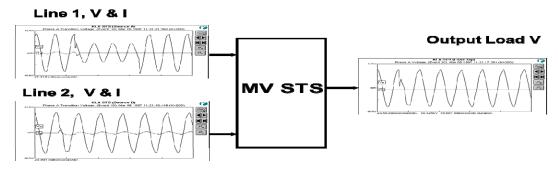

Item 2 to 5 all come with 5 years warranty.

Electronics can be Transformative – BUT different Paradigm – and System

- Readily Controllable (remotely)
- Supply Real Power, P, Dynamically
- Reactive power, Q, ($|P + jQ| < S_{INV}$), Dynamically
- Active Damping (stabilizing)
- Controllable or Synthetic Inertia
- Fault Clearing
- Rapid Dynamics
- Unbalanced
- Non-linear sourcing
- Active Filtering
- Harmonic cancellation
- Also, high speed series devices would limit faults and enable robust interactive microgrids

Micro-Grids for Digital Quality Power

- Renewables plus back-up generation plus storage plus SDS
- → UPS quality power


Thyristor based MV Switch

Max Voltage (MSV)
Lightning Impulse (BIL)
Power Frequency
Withstand Voltage, Pole-Ground
Nominal L-L System Voltage
Rated Continuous Current (RC)
Overload, 120 seconds
Short-circuit-current, 10 cycles
Short-circuit-current,1 cycle

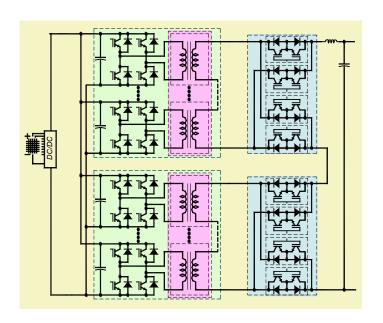
15 kV Class 95 kV 60Hz 36kV, 1min. 13.8 kV, 60 Hz 300 A

375A(125% RC) 12kA(rms,sym) 25.0 kA(peak)

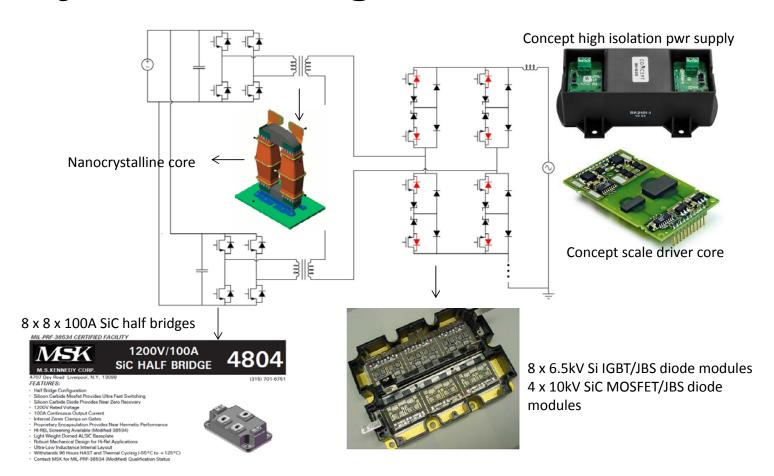
"NEW" Transfer Switch

MV Direct Connect Inverter (ARPA-E)

Metric	Typical Present Day	Target
Cost	\$0.22/W ¹	\$0.10/W
Weight	~30,000 lbs (incl MV tranformer)	<2,000 lbs
Efficiency	97%³ (incl. MV transformer)	98% (direct to MV)
Rating (MVA)	1.25 MVA ²	2 MVA
Native Voltage	320VAC ²	13.8 kVAC
Reliability	20 year lifetime	30 year lifetime
"Agility"	Parallel connection to the grid, limited ability to respond to system events	High frequency, series connected to grid: rapidly respond/clear faults, tune power quality

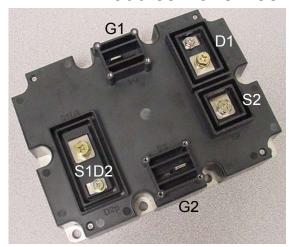

¹DOE 2011. SEGIS-AC FOA

²Based on Satcon Prism 1.25MW inverter

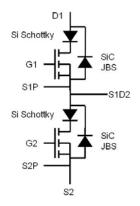

³CEC weighted, module-to-grid, including MV transformer losses

System Overview: Multilevel Inverter

- 2 MW module (1- or 3-phase)
- Solid-State AC Output Switch
- Two-Stage Conversion
- 20 kHz 600VDC → 6 kV AC Front
 End 60 Hz Modulator
- 6kV → 10kV Matrix Demodulator
- 4-Q, PF Operation

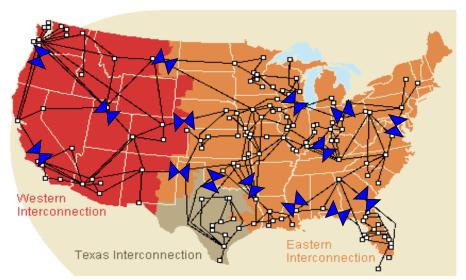


System Building Blocks



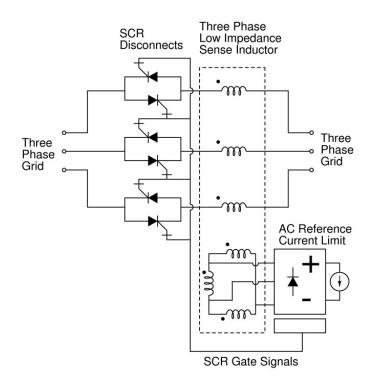
10kV, 120A Half H-Bridge SiC Mosfet Module

- Utilize 10kV SiC Mosfet Module Design Developed for ONR/DARPA WBG HPE Program
- Module Footprint is Standard 140 x 190mm Fully Populated Module Has 24x 10A SiC Mosfet and 12x 10A SiC JBS Diode Die
- Module Demonstrated to Operate at 20kHz in 13.8kV to 480V SSPS System and up to 40kHz in Subsequent Tests
- 42 Modules Have Been Delivered Over The Past 3 Years

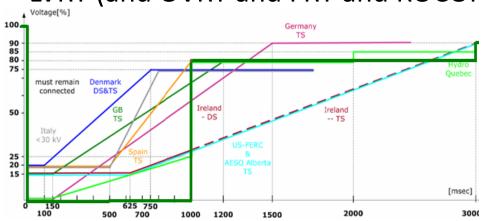


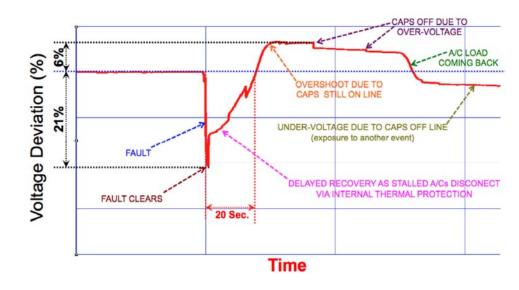
Technology Comparison

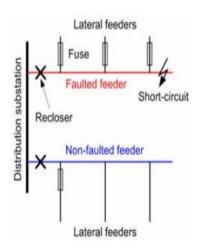
Characteristic	Typical Present Day	MV Direct-Connect Inverter	η	Mass	Reliability	Cost
Semiconductor Technology	Silicon	Silicon Carbide (SiC)	↑	↑	↓, ↑	\
Switching Frequency	2-8 kHz	Tens of kHz	↓, ↑	↑	\leftrightarrow	\leftrightarrow
Topology	DC-AC-XFRMR	DC-AC(HF)-AC(LF)	1	↑	\leftrightarrow	\leftrightarrow
Transformer Core	Si Steel	Nanocrystalline	↑	↑	\leftrightarrow	↑
Semiconductor Output Voltage	320VAC	13.8 kVAC	↑	↑	4	↑
Junction Temp.	100-125 deg C	>200 deg C (SiC chip)	\leftrightarrow	↑	↓ ,↑	\leftrightarrow
Thermal Management	Actively Cooled (fans), aluminum heat sink	Passive cooling, carbon foam heat pipe	\leftrightarrow	↑	1	\leftrightarrow
Modularity	Parallel-Input, Parallel- Output 2-level building blocks	Parallel-Input, Series- Output multilevel building blocks	\leftrightarrow	\leftrightarrow	↑	\leftrightarrow
Prognostics	Based on historic reliability data	Based on predictive algorithms	\leftrightarrow	\leftrightarrow	↓, ↑	\leftrightarrow

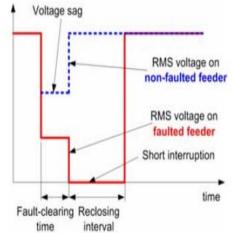

Some Possible Game Changers

- •Back to Back DC links with short term (mandatory) area balance (μ Tile the Country)
- •Distributed Inverters (many provided through renewable integration)
- Local Voltage Regulation
 - fast! Even sub cycle, can mitigate existing flicker, increase quality and reliability, achieve voltage regulation with no tap-changers, line regulators, or capacitors
- Fault Limiting
- •Storage Integration (very cost effective as element of renewable power plant)
- •Feeder Decoupling, possibly with shared storage, s
- •Hybrid AC/DC Converters, dc for building etc ... , plus AC, hybrid transformers

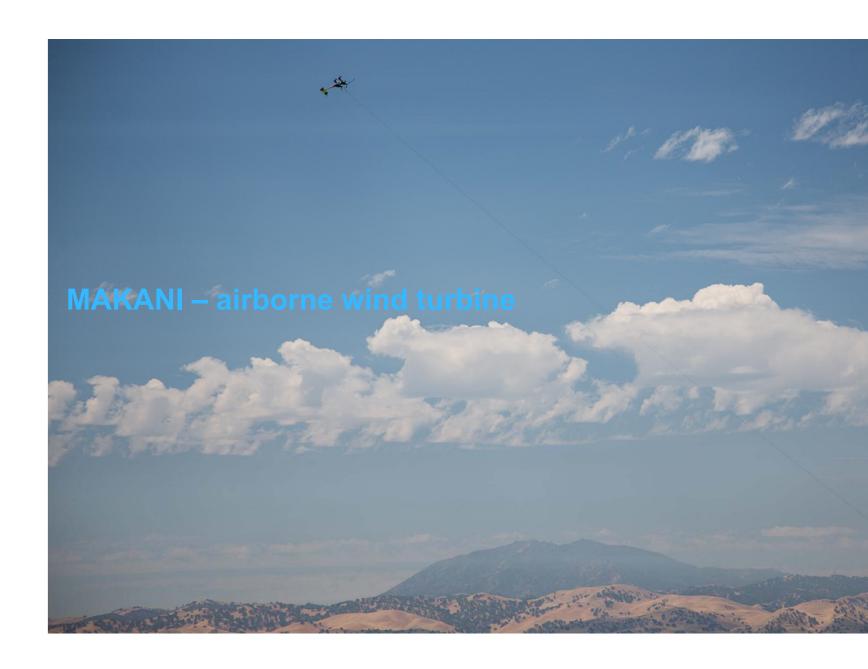

Faults, Protection, Switching and Current Limiting, Series Device very challenging (ac easier)

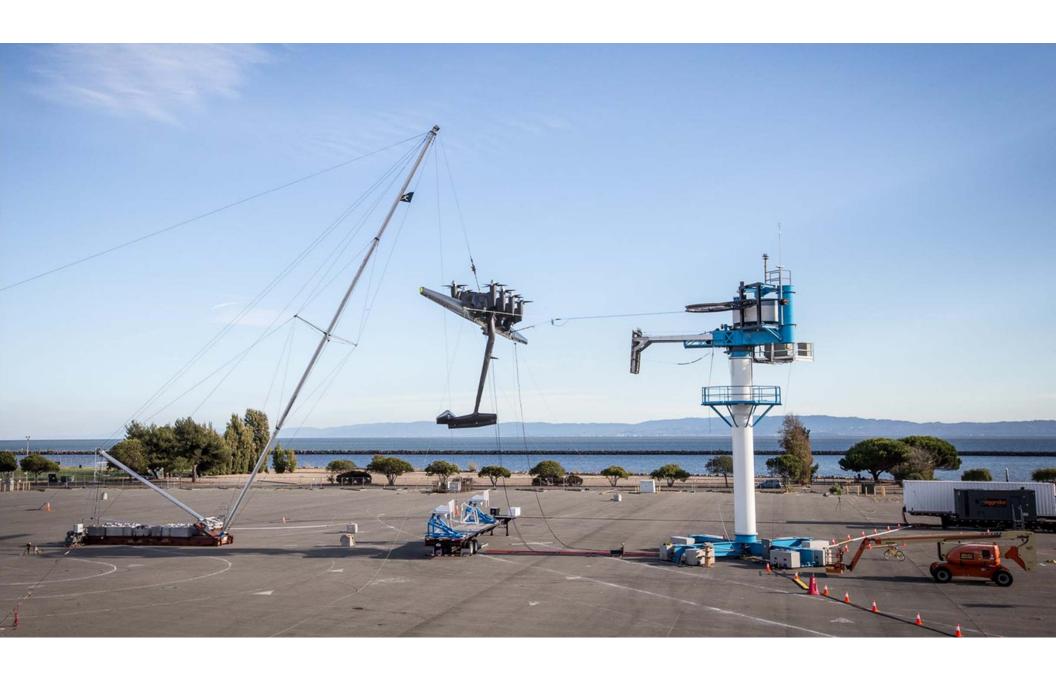

- Faults have debilitating effect on Grid, why? 20x rated current for seconds to 10's of seconds
- Ideal Application for Power Semiconductors (Loss? Hybrid devices?




Advance Inverter Fault Capabilities

LVRT (and OVRT and FRT and ROCOF)





- FIDVR
- Not compatible rotating machine based DG
- Inverter can provide real and reactive power

- Fault studies limit DG penetration due to Recloser overload in substation with shared MV bus (common).
- Very big deal in some places today (Ontario)
- BUT, fault current is reactive as is traditional DG fault current.
- Inverter fault current? Overload Capability
- Much like inertia, what do you want it to be?
- Naturally the current is real, so orthogonal to fault current, but it could even be capacitive if needed
- Inertia, frequency, voltage
- Decouple? Freedom to vary inertia
- Devices
- Applications Solutions
- Adoption ?

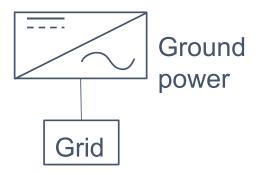
SUBSYSTEM OVERVIEW

Wing power

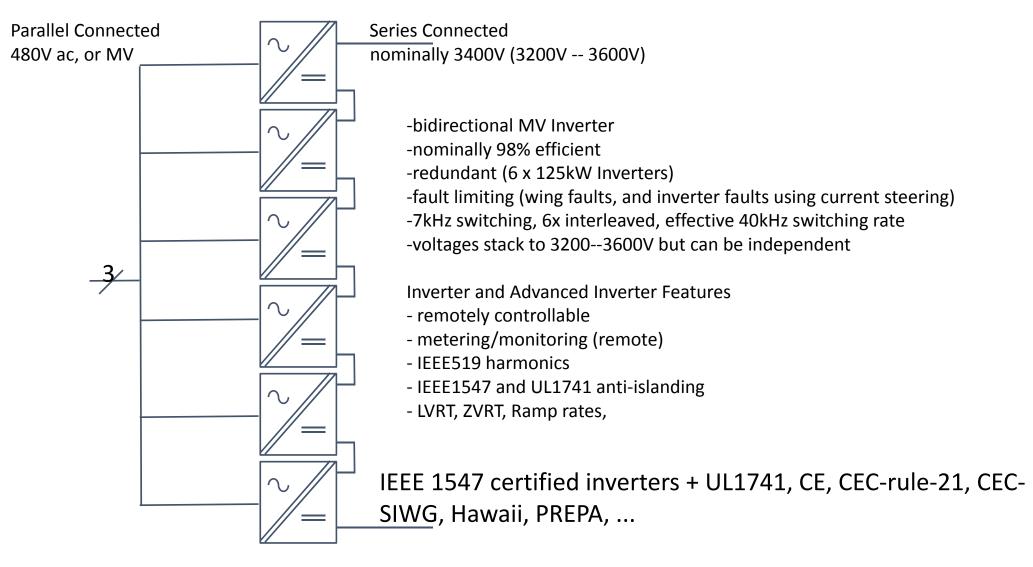
8 7 6 5

Wing-side

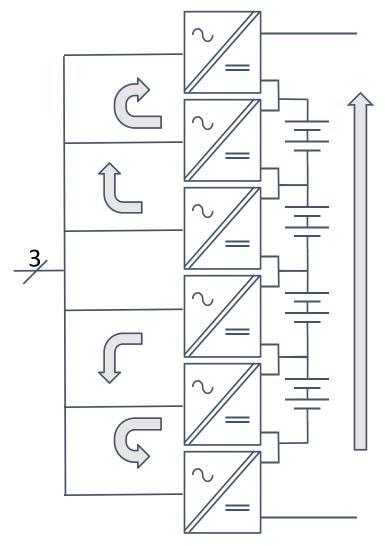
Eight two-quadrant motor/generators (M/G) (top-level spec)


Tether

4 - 16 separately insulated conductors
V ~ 4kV
I ~ 200A
DC (see justification later)


Grid-side

Standard service-level interconnect to grid (e.g. 480VAC 3ph 4w)



MV DC – Another Type of Multi-Level

Simple Storage Integration (single wing)

Ideal Power Dispatch

- -ramp up smoothly
- -maintain constant dispatched power
- -ramp down smoothly
- -Partial Power (rating) Scheme
 - -direct connection of battery
- -as battery voltages fall under loading and discharge, outer inverters compensate for the droop
 -OR one battery per inverter, but use contactor/switch to control stack level voltage

