

Sandeep Bala, Workshop on "High Pen PV through next-gen PE technologies", NREL, 2016-10-12

Next gen PV inverter systems – using WBG devices Challenges and research needs

Agenda WBG-based PV inverter systems

Background: ABB solar inverters

Challenges for WBG-based PV string inverters

Research needs

Agenda WBG-based PV inverter systems

Background: ABB solar inverters

Challenges for WBG-based PV string inverters

Research needs

ABB solar portfolio **Factsheet**

ABB in the solar business

- Has provided solutions since the 1990s
 - link
- Acquired Power-One in 2013
 - link
- Has worldwide solar inverter installed base of over 22 GW
 - link
- Doubled installed base in India from 1 GW to 2 GW in 6 months in 2015
 - link

ABB solar portfolio

From source to socket, no one provides more solar solutions

Utility-scale

Low voltage products

Solar inverters

Turnkey stations

Medium voltage products

Transformers

Substations

Electrical balance of plant

Energy storage

Plant automation (Symphony Plus for Solar)

Remote monitoring (Aurora Vision)

Operations and maintenance

ABB solar portfolio

From source to socket, no one provides more solar solutions

Recent products launched PVS980

Basic specs:

- 1818...2000 kVA
- 1500 Vdc max
- 98.6% CEC efficiency
- 1-MPPT

System

- Dimensions: 2366H x 3180W X 1522D
- Weight: 3850kg

Highlights:

- Closed loop cooling system
 - phase transition and thermosiphon technology
 - no fillable liquids, pumps, valves, inhibitors or leaks
- Modular, industrial design

Recent products launched **TRIO-50**

Basic specs:

- 50 kVA
- 1000 Vdc max
- 98.0% CEC efficiency
- 1-MPPT

Power module

Dimensions: 702H x 725W X 260D

Weight: 66kg

Highlights

- Vertical or Horizontal mounting
- AC and DC Connection box options
- Field-replaceable fan tray

Recent products launched UNO-3.6/4.2

Basic specs:

- 3.6/4.2 kVA
- 850 Vdc max
- 97.5% CEC efficiency
- 1-MPPT

System

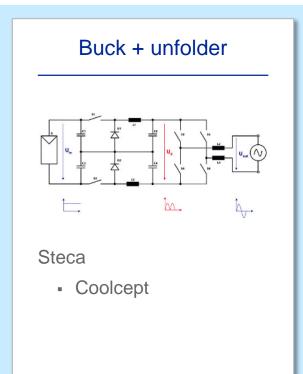
Dimensions: 553H x 418W X 175D

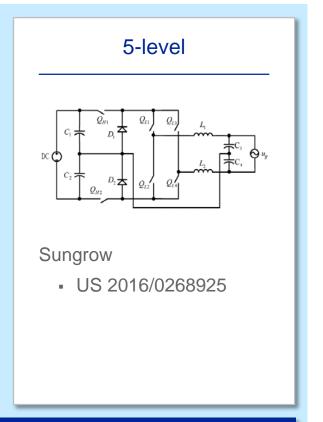
Weight: 12kg

Highlights

- Single-stage topology
- Natural convection cooling

Agenda WBG-based PV inverter systems


Background: ABB solar inverters


Challenges for WBG-based PV string inverters

Research needs

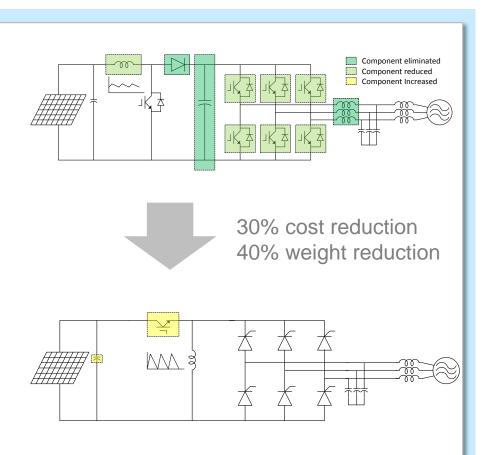
Alternatives for WBG Continued innovation in Si-based converters

Flying capacitor Take Voice 1164 Take Voice 1164 Flying capacitor Flying capacitor Voice 1164 Flying capacitor Flying capacit

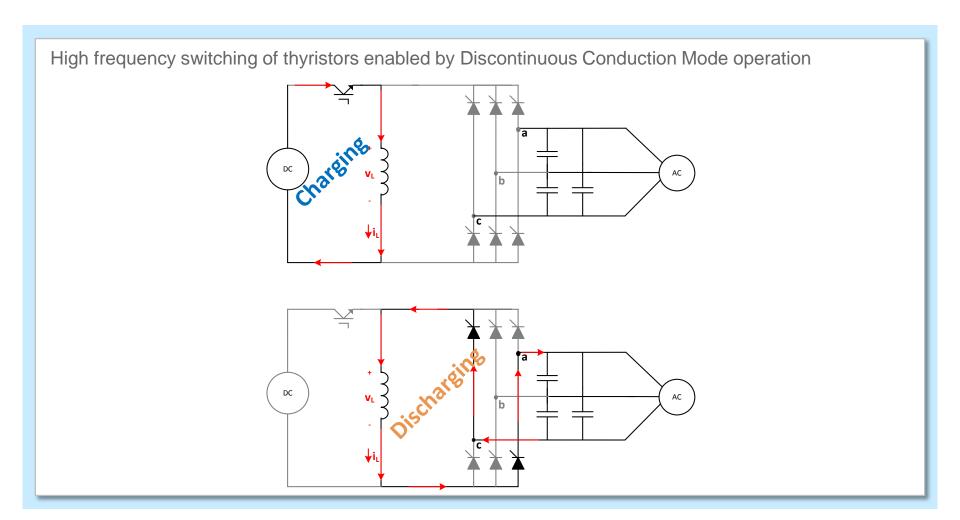
Si-based converters continue to evolve with lower cost to performance ratio

Alternatives for WBG ABB Si thyristor-based topology

Ongoing ABB R&D project


Funded by DoE Sunshot

Approach to reduce cost and improve reliability


- Semiconductors
 - Only one IGBT
 - Replace: 6 IGBTs → 6 Thyristors
- Passives
 - No output inductor
 - No dc bus capacitor

Further improvements may be possible with:

- Wide bandgap devices
- Better thyristors

Alternatives for WBG ABB Si thyristor-based topology

Challenges for SiC Reliability question marks

Bias Temperature Stress (HTRB and HTGB) effects on Threshold Voltage instability

E.g. AECQ-101

- based on JEDEC JESD-22 A108C method
- "electrical testing shall be completed as soon as possible and no longer than 96 h after removal of bias from devices"

Standards have insufficient specs

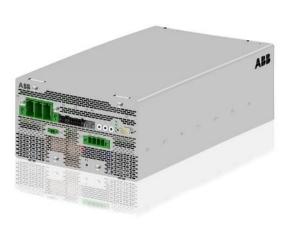
- Measurement temperature
- Measurement time
- Measurement speed

Measured at (temp)	Measured at (time)	Possible conclusion
high temp	stress time << 10 ⁵ sec	BTS improves VT stability
room temp	following rapid cooling	BTS degrades VT stability
room temp	after some time has passed	BTS has small effect on VT stability

Existing device testing standards inadequate to predict converter reliability

Outlook for SiC ABB's first products being rolled out now

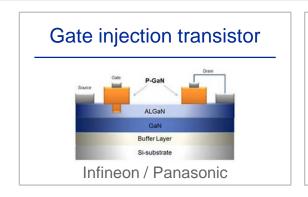
Battery charger for rail applications

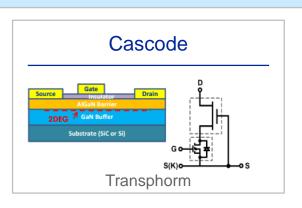

Basic specs:

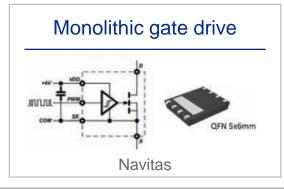
Power: 10 kW

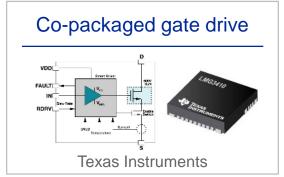
• Footprint: 360 x 220 mm

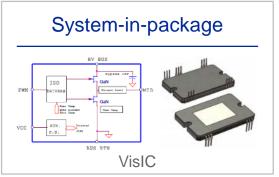
Highlights:


- Compatible with all rail voltages
- 10x smaller footprint
- 80% reduction in weight


Bordline BC


Cost/benefit currently case-by-case... With a cautious eye on reliability


Challenges for GaN GaN-world – a frontier location



Device characteristics and packages evolving rapidly

Agenda WBG-based PV inverter systems

Background: ABB solar inverters

Challenges for WBG-based PV string inverters

Research needs

Next gen PV inverters Setting a new, lower cost curve

How can WBG devices lower PV inverter cost?

- Use less material
 - higher frequency switching reduces size of passives
 - higher temperature operation (SiC) reduces size of heat sinks
- Simpler circuit designs
 - two-level instead of three-level inverters needs fewer auxiliary components
 - use of monolithic gate drives (GaN) reduces parts count

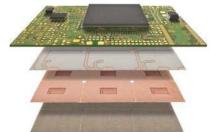
What are the other non-traditional pathways for cost reduction?

- Advanced manufacturing
 - fewer, cheaper, and more automated processing and assembly steps
 - leaner supply chain

PCB integrated power electronics System in board

Why integrate?

- Increase electrical performance, functionality and efficiency
- Reduced parasitic inductance/resistance
- Improved R_{TH}
- Low cost potential

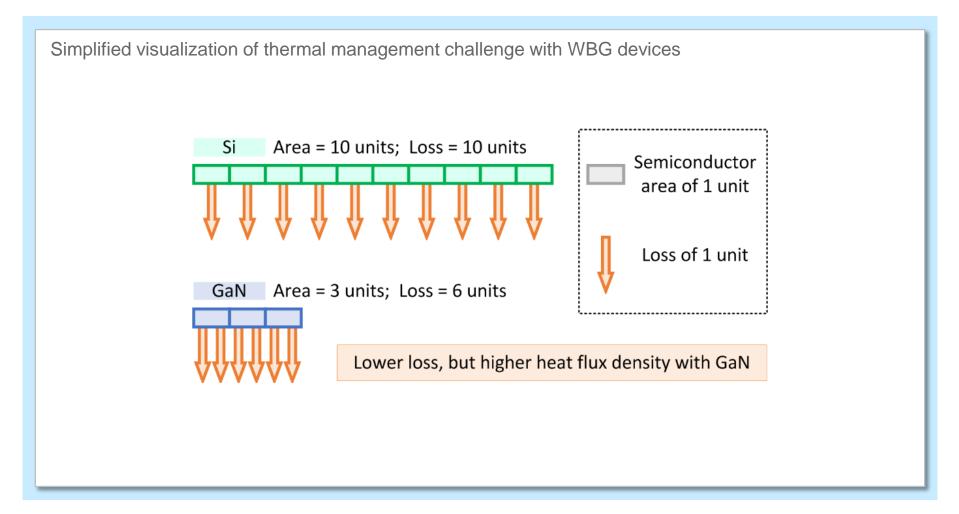

Challenges with integration

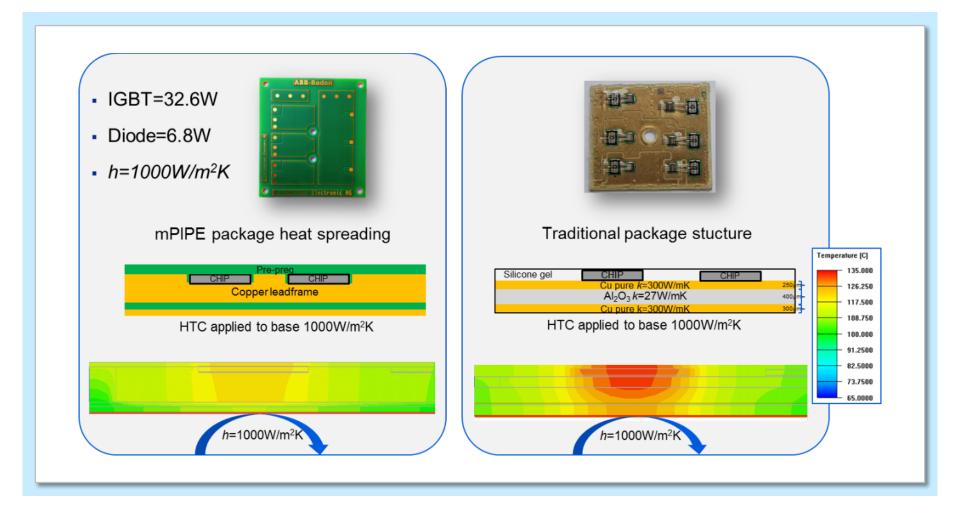
- Increased power density → thermal management from outset
- Increased complexity → package becomes more application specific

Applications

- PV string invertor
- EV car chargers
- Switched mode power supplies
- Integrated drives (robotics, HHEV)

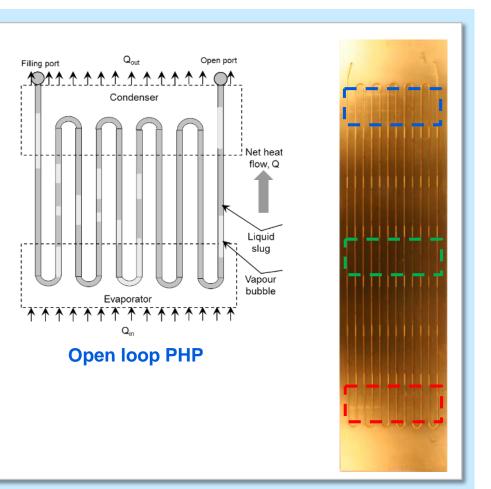
Schweizer Electronic p₂Pack


Next generation power electronics package


Commercially available power module

PCB integrated power electronics Considerations for WBG devices

PCB integrated power electronics Potential for better heat spreading

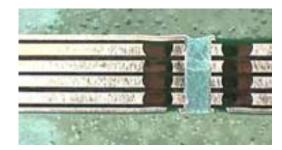

PCB integrated power electronics Summary of results of embedding Si chips

	#	Activity	Status	Comment/Result
	1	Chip metallization • Cu metallization	©	Chip metallization of small gate pads challenging. More difficult for smaller gates for WBG.
:	2	Die attachChip alignment fixtureSilver film sinteringThermo-shock test	☺	 Acceptable alignment achieved Agromax 8020 sinter foil identified as a suitable candidate material. Successful sintering and thermo-shock cycling to leadframe
;	3	Embeddingp₂Pack lamination and top contact	©	Successful embedding and top contact
	4	SwitchingSwitching behaviourDouble pulse test	©	Comparable to standard module (not optimized). IEEE journal
	5	Insulation • Breakdown • Partial discharge	©	 Break down non-aged 5.3kV_{rms} → 6.5kV_{rms} Partial discharge ok up to 3.6kV_{rms} in air (3x nominal operating voltage) 4.7kV_{rms} potted in gel
,	6	ThermalHeat spreadingR_{th}	☺	 PCB embedded module Rth -cooler = 0.50°C/W - 0.61°C/W SkiiP Rth j-cooler = 0.89 °C/W - 0.96°C/W (data sheet Rth IGBT=0.9°C/W) PCB embedded module 30-44% lower R_{th}. Thermal simulations highlighted superior heat spreading
	7	Reliability • Active power cycling	©	 30A 120% I_{nominal} dT=42-45°C 1M cycles no failure 35A 140% I_{nominal} dT=70-75°C 2M cycles no failure 40A 160% I_{nominal} dT=90-93°C 400k cycles

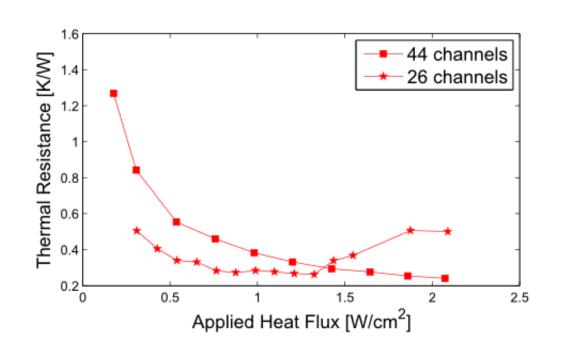
PCB embedding of pulsating heat pipes Basics

Properties / Features

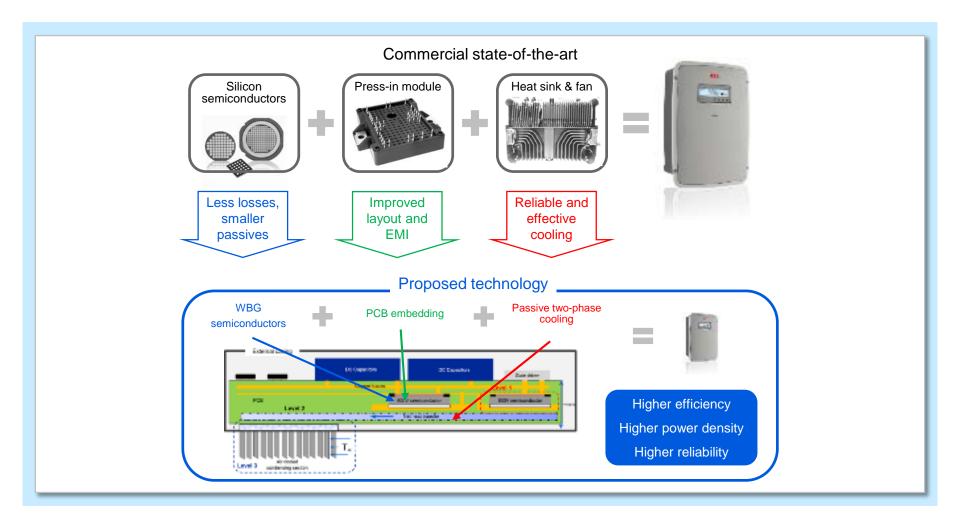
- Sensible and latent heat transfer
 - liquid slugs and vapour plugs
- PHP is wickless
 - easier to integrate
- Operates independent of gravity
 - depends on capillary forces, surface tension of fluid and channel diameter
- Flexible integration
- Operate at sub-ambient pressures
- Lower cost/easier to manufacture compared to traditional wicked heat pipe
- Dielectric working fluids
 - direct chip cooling possible



PCB embedding of pulsating heat pipes Example of performance dependence on design parameters


Minimum R_{TH} for tested conditions: 0.20°C/W

- Similar to values reported in literature
- >10x improvement vs. copper


$$R_{th} = \frac{T_{evap} - T_{cond}}{Q_{in}}$$

Schweizer Thick Copper Board

A vision for the future PCB-integrated WBG-device based PV inverter

Power and productivity for a better world™

