

WBG Opportunities in PV Inverters Enabled by Superior Dynamic Performance

Professor Alex Q. Huang Progress Distinguished Professor of Electrical Engineering NSF FREEDM Systems Center/ECE Department NC State University

October 12, 2016

Presentation Outline

> WBG Device Performance: Possibility vs. Reality

>WBG PV Inverter Adoption Strategies & Opportunities

FREEMS Conduction Loss: Current Status

- Theoretically about 1000X reduction over Si MOS. Currently 100X reduction achieved @1200V. So another 10 time possible
- The improvement is only about 10X over SJ devices @600V! Only about 3X over advanced IGBT
- SiC roadmap: 1) Channel mobility improvement, 2) channel density (trench) 3) wafer thinning; 4) SJ
 SiC MOSFET, 5) large wafer size (e.g. 6 inch to 8 inch)

How about Device Capacitance?

GaN: Lateral Device Construction systemscenter

Comparison of R_{on} for Si, SiC, and GaN

Credit: International Rectifier

FREE A Closer Look at Ron, Capacitance

*Si SJ: Infineon IPW65R037C6 *SiC MOSFET: SCT2120AF from Rohm *GaN HFET: GS66516T from GaNSystem

600V devices

	Ron (moh m)	Ciss (nF)	FOM 1 (Ron*Ciss)	Coss (nF)@400V	FOM2 (Ron*Coss)
Si SJ	37	7.24	267	0.38	14
SiC MOS	120	1.2	144	0.09	10.8
GaN HFET	25	.52	13	0.13	3.25

- Gate loop is getting faster
- Linearly proportional to die size

SiC has another 10X reduction potential/currently too low channel mobility

 Lateral device has further advantage Drain loop dV/dt etc will increase?

Turn-off dV/dt ~ I/C=J/C_{sp}

Turn-on dV/dt~lg*Vdc/Qgd

Third Quadrant Operation & Diode Reverse Recovery: Cost & Performance

Figure 14. 3rd Quadrant Characteristic at 25 °C

Third Quadrant Operation & Diode Reverse Recovery: Cost & Performance

*Si SJ: Infineon IPW65R037C6 *Si 1200V FS-IGBT: Infineon IkW40N120T2 *SiC MOSFET: 1200V/25mohm Cree MOSFET *GaN HFET: GS66516T from GaNSystem: 600V

Entering an era where diode reverse recovery loss no longer a major concern

- Losses are dominantly capacitive loss Eoss dissipated on the switch!
- Stored energy in the diode is typically recovered during the next diode turn-on event
- SiC MOSFET operates as a synchronous rectifier further reduces diode conduction losses (smaller than JBS diode)

IGBT Dynamic Losses: Bipolar Current Conduction Physics

1200V/600A Infineon IGBT Module

Total US solar: 32 GW (2016), roughly 38 Mega-A if equivalent to 480VAC

Incremental reduction of this losses are possible as we move to 8th, 9th generation etc **10**

4 WBG chip size reduction & gate loop

Gate loop quality factor:

$$Qg = \frac{1}{R_{g,int} + R_{g,ext} + R_{driver}} \sqrt{\frac{L_g + L_s}{C_{isss}}}$$
Gate loop intrinsic speed: $Sq = \frac{1}{R_{g,int} + R_{g,ext} + R_{driver}}$

Gate loop intrinsic speed: $Sg = \frac{1}{(R_{g,int} + R_{g,ext} + R_{driver}) * Ciss}$

Gate loop figure of merit (GFOM):
$$GFOM = \frac{Sg}{Qg} = \sqrt{\frac{1}{(Lg + Ls) * Ciss}} = \omega_g$$

Conclusion: Lg+Ls must be proportionally reduced for WBG devices to take advantage of the intrinsic speed of WBG devices.

Monolithic integration

Multichip integration and packaging innovation

Hard-Driven MOSFET: Small Rg/Lg systems center

Zero turn-off loss (ZTL) can be achieved

1200V/80mohm SiC Power MOSFET chips used

Ron	Rg, int	Qg	Qgp	Qgd	Qoss(equiv)	
80 mohm	4.6 ohm	50 nC	10nC	20nC	80 nC@1kV	12

Turn-on Process: Approaching Minimum Eon

3.38 MHz operation of 1.2 kV Systems center SiC MOSFET (ZVS turn-on, ZTL turn-off)

Side view of converter

Demonstrated almost zero dynamic loss

*Guo and Huang at WIPDA 2015

How about high Tjmax?

SiC MOSFET Cross Section

SiC MOSFET: High Temperature?

$$P \max = \frac{Tj \max - Ta}{Rja} = I^2 R(T) = J^2 A^2 R(T)$$

$$R(T) = \frac{R_{sp0}}{A} (\frac{T}{T0})^{\alpha}$$

$$R(T) = \frac{R_{sp0}}{A} (\frac{T}{T0})^{\alpha}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$J = \sqrt{\frac{Tj \max - Ta}{(K1 + K2)}} \frac{Ta^{\alpha}}{R_{sp0}Tj \max^{\alpha}}$$

$$Package determined$$

$$Heatsink determined$$

$$Package determined$$

$$Heatsink determined$$

$$Heatsink determined$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$J = \sqrt{\frac{Tj \max - Ta}{(K1 + K2)}} \frac{Ta^{\alpha}}{R_{sp0}Tj \max^{\alpha}}$$

$$Package determined$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = Rjc + Rca = \frac{K1}{A} + \frac{K2}{A}$$

$$Rja = \frac{K1}{(K1 + K2)} + \frac{K2}{R}$$

WBG Adoption Strategies

Residential:

- SiC SBD/JBD in microinverter has been a reality for a number of years (dynamic loss reduction)
- Next step might be the use of GaN in Mhz flyback/microinverters (dynamic loss reduction, variable frequency CRM)
- Panel power increasing from 200W to >300W, need to increase power density
 SIC SED

Fig. 1. Flyback micro-inverter for the PV application.

Fig 13: Prototype with thermal management employed during testing,

McLamara, Huang, APEC 2015

Device Level Hybrid (I) for high power PV inverter

Collector current (A)

ECCE Asia (ICPE-ECCE Asia), Seoul, 2015, pp. 844-849.

Device Level Hybrid (II) 1200V/200A FREEDM-Pair

Wolfspeed 1.2kV/40mΩ SiC MOSFET

ABB 1.2kV/150A Si IGBT

@600V/100A Both tested with SiC SBD freewheeling diode

Huang, Alex Q.; Song, Xiaoqing; Zhang, Liqi, "6.5 kV Si/SiC hybrid power module: An ideal next step?," IWIPP, 2015 IEEE International Workshop on , vol., no., pp.64-67, 3-6 May 2015

System Level Hybrid

https://www.fujielectric.com/company/research_development/theme/sic_pcs.html

GE Pure SiC PV Inverter

owerblock

- 1500 VDC PV Inverter
- 1700V Full SiC MOSFET solution
- Air cool system (cost and reliability)
- System cost ?
- Annual energy production UP

22

http://www.pv-tech.org/products/ges-advanced-silicon-carbide-technologyat-core-of-next-gen-1500-volt-centr

PV Inverter Opportunity: Customization of the voltage class

Three trends in the global PV Inverter market that are impacting the United States in 2016

Drive to reduce PV system costs will accelerate demand for 1500V technology

23

MV PV Inverter ?

http://www.pv-tech.org/products/ges-advanced-silicon-carbide-technologyat-core-of-next-gen-1500-volt-centr

Topology Simplification and System Cost Reduction

Fig. 4: System costs of magnetic components (left) and heat sink (right) as functions of technical performance.

*Ulrich Schwarzer et. al, "System Benefits fopr Solar Inverter using SiC Semiconductor Modules", in PCIM 2014

SFREE Mhz PV Inverter Opportunity: Filter Reduction

Single inverter

Interleaved inverter

constant frequency, CCM

hard switching

large filter inductor: (10kW/240Vac/10kHz) 0.8mH/50A; e.g. 5.2 inches Kool Mμ toroid variable frequency, CRM

 l_{L21}

ZVS/lower EMI

small filter inductors: substantial reduction by increasing f and operate in CRM!

- Long term: Die size shrinking/wafer scaling (device cost reduction) potential is huge for GaN and SiC
 - SiC:
 - 6 inch to 8 inch
 - Channel mobility improvement
 - Wafer thinning
 - GaN:
 - 8 inch to ?? Inch
 - Optimal drift length design
- Moving from bipolar device (IGBT) to unipolar device (SiC MOSFET, SJ SiC MOSFET, GaN HEMT) with smaller die size
 - Significantly better dynamic performance than Si, hence is the most important factor in driving PE applications for system cost reduction
 - In ZVS circuits, f is a variable that can change from 10 kHz to 10 Mhz
- > Adoption focuses on performance improvement at acceptable cost
 - Hybrid device/system

Thank You