

### NSUF Plans and Needs for In-Pile Sensors and Characterization

#### Brenden Heidrich, Ph.D. R&D Capabilities Scientist, NSUF Idaho National Laboratory

Advanced Sensors and Instrumentation Program Review October 12, 2016







## What is a User Facility?



#### **Nuclear Energy**

- Regional, national or international facility with <u>unique</u> experimental capabilities.
- Access is typically <u>cost-free</u> through a competitive proposal process.
- The goal is to connect the <u>best ideas</u> with the capability regardless of geographical separation.



**Advanced Photon Source (ANL)** 



Spallation Neutron Source (ORNL)

There are currently 50 DOE user facilities in the U.S.

- Advanced scientific computing research
- High flux synchrotron and neutron sources
- Electron beam characterization
- Nano-scale science
- Biological and environmental research
- High energy and nuclear physics
- Fusion energy science

.....But before 2007 there were no user facilities to address the unique challenges of nuclear energy.

Then came the <u>Advanced Test Reactor National</u> <u>Scientific User Facility</u>!



# What does NSUF study?



**Nuclear Energy** 

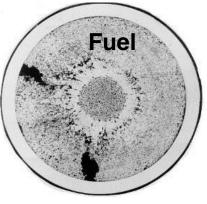
#### In-Reactor Degradation Behavior of Nuclear Fuels and Materials

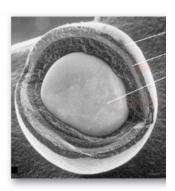
#### Maintaining fleet of current reactors

- Life extension for commercial reactors
- Developing accident tolerant nuclear fuels

#### Developing the next generation of safer more efficient reactor systems

- Materials resistant to high levels of radiation damage
- Reduced enrichment fuels for test reactors
- High temperature gas reactor fuels and materials
- Liquid metal cooled fast reactors for transmutation


Restructuring in U-Pu-Zr Metallic Fuel


#### Radiation Damage Effects in Cladding and Structural Materials

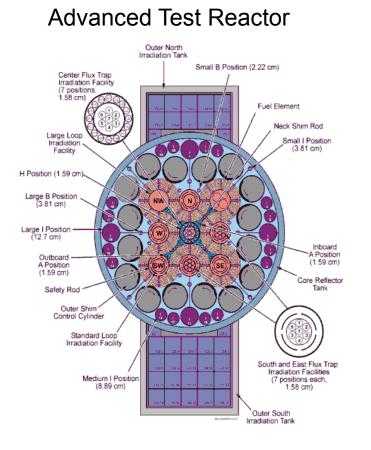


Austenitic Stainless Steel Following Irradiation in EBR II Fast Reactor

U-Mo Plate Fuel






Gas Reactor Coated-Particle Fuel




# Initial Vision for the (ATR) NSUF



#### Allow the research community access to test reactor space and existing post irradiation examination facilities



Post Irradiation Examination (PIE) Facilities at Materials & Fuels Complex (MFC @ INL)





# **NSUF – A consortium**



#### **Nuclear Energy**

University of Michigan







ILLINOIS INSTITUTE OF TECHNOLOGY





Center for Advanced Energy Studies



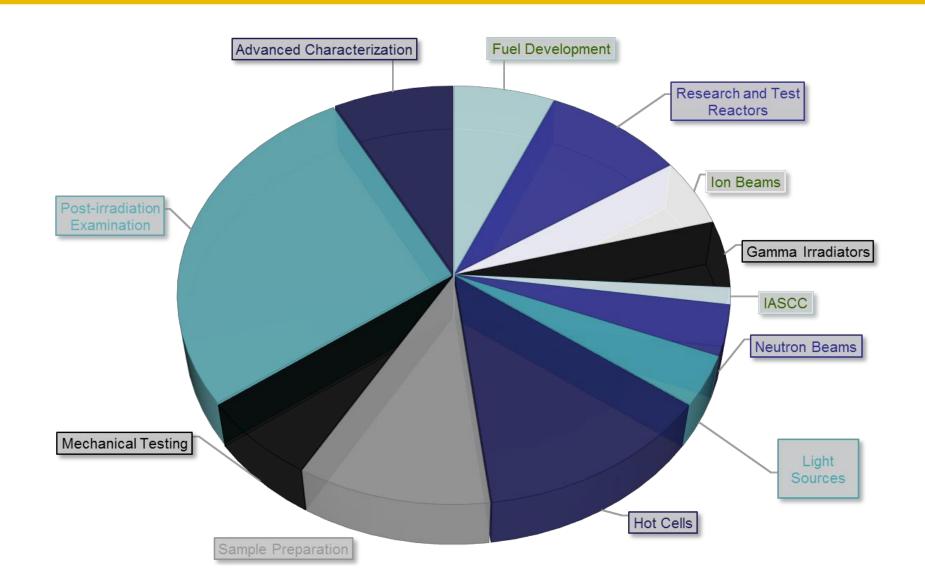






Westinghouse Electric Company LLC

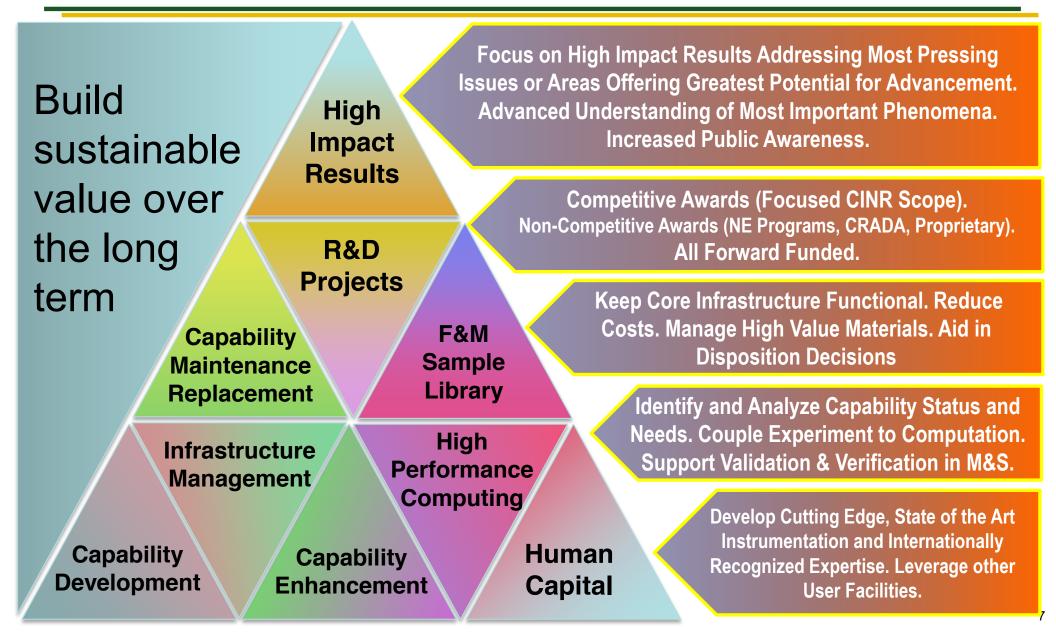









# **NSUF** Capabilities








Expanded NSUF Vision







# Accessing the NSUF



#### **Nuclear Energy**

#### 1. Consolidated Innovative Nuclear Research FOA

- For full irradiation/PIE, PIE Only, or APS projects
- Kickoff in August, awarded the following June
- R&D support funding can be requested

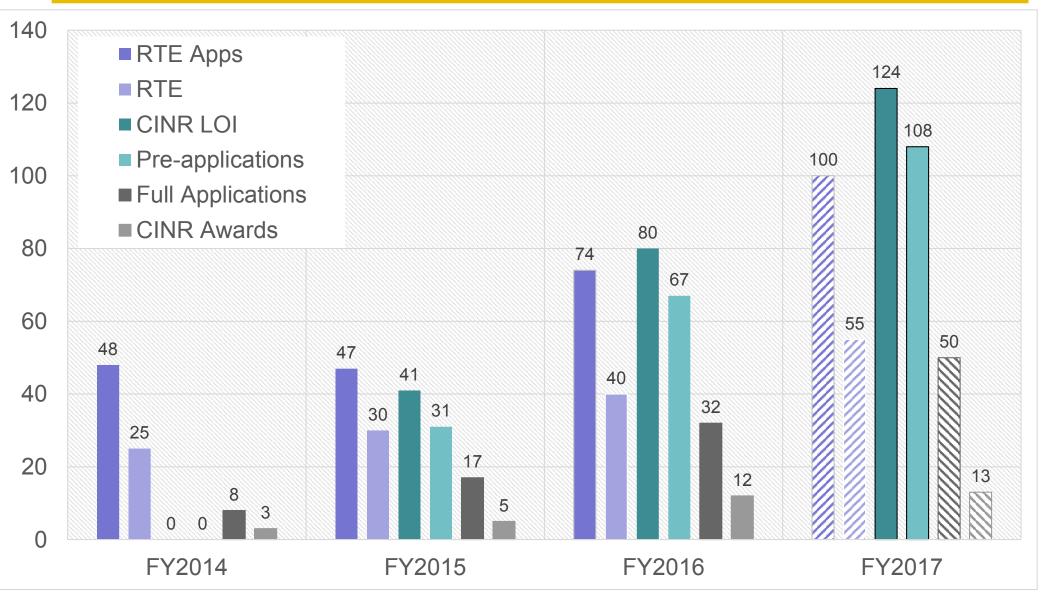
#### 2. Rapid Turnaround Experiment calls

- For small examination or beam-line projects
- Three calls per year
- No R&D support funding
- XPD at NSLS-II, IVEM and MRCAT at APS are available

#### 3. CRADA and WFO (non-competitive)

- Cost shared non-proprietary research
- Full cost recovery proprietary research
- Utilized so far by industry and the Nuclear Regulatory Commission

#### 4. DOE-NE Infrastructure Programs


- Reactor Upgrades
- General Scientific Infrastructure





# **NSUF Awarded Research**







# FY 2017 CINR Workscopes



**Nuclear Energy** 

#### Nuclear Energy-Related R&D Supported By Nuclear Science User Facilities Capabilities (NSUF -1)

- NSUF 1.1a: Neutron Radiation Assessment of Advanced Alloys for LWR Core Internals
- NSUF 1.1b: Synergistic Radiation and Thermal Aging Effects on Cast Austenitic Stainless Steel
- NSUF 1.2a: Advanced Manufacturing of Instrumentation for In-Pile Measurement and Characterization of Nuclear Fuels and Materials
- NSUF 1.2b: Developing and Testing Advanced Materials and Advanced Sensors through In-Pile Tests.
- NSUF 1.2c: Irradiation Testing Of Materials Produced By Innovative Manufacturing Techniques (SiC)
- NSUF-1.3: Advanced Material Technologies Development (ODS)



# FY 2017 CINR Workscopes



**Nuclear Energy** 

#### Nuclear Science User Facilities Access Only (NSUF-2)

- Core and Structural Materials
- Nuclear Fuel Behavior and Advanced Nuclear Fuel Development
- Advanced In-reactor Instrumentation
- Experiments with Synchrotron Radiation



Separate Effects Irradiation Testing For Validation of Microstructural Models in Marmot (NEAMS 2)





#### **Nuclear Science User Facilities**

# CAPABILITIES



# NSUF Irradiation Capabilities



Nuclear Energy

# Neutron Irradiations

- ATR (loop, rabbit) 250MW
- ATR-C
- HFIR (rabbit) 85MW
- MITR (loop) 6MW
- PULSTAR 2MW

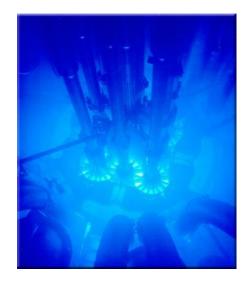
# Hot Cells

- INL (HFEF, FCF, AL, IASCC)
- ORNL (IFEL, IMET, REDC)
- PNNL (RPL)
- Westinghouse (MCOE)
- U. Michigan (IMC)

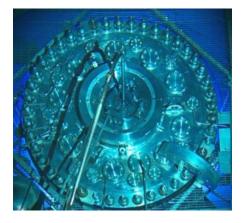
# Ion Irradiations

- Tandem Accelerator Ion Beam (Wisconsin)
- Michigan Ion Beam Lab (Michigan)
- Intermediate Voltage Electron Microscope – IVEM (ANL)

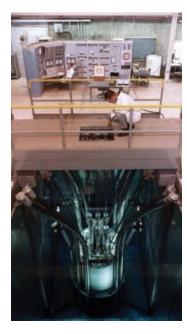
# Beam-lines


- X-ray (ANL APS: MRCAT, IIT)
- Neutron, positron (PULSTAR, NCSU)
- Visit NSUF.INL.gov under <u>Research</u> <u>Capabilities</u> tab for details




# NSUF – Multiple Research &Test Reactors




#### **Nuclear Energy**

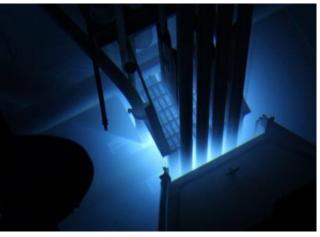


#### Advanced Test Reactor (INL)



High Flux Isotope Reactor (ORNL)




#### ATR Critical Facility (INL)



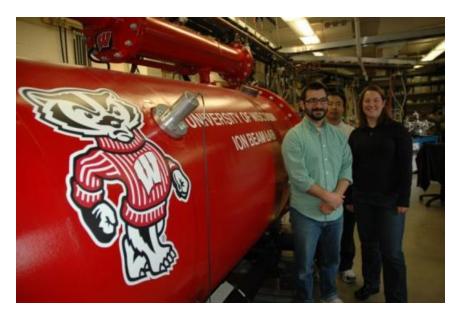
NRAD Reactor (INL)



MIT Reactor



PULSTAR Reactor (NCSU)




# NSUF – Ion Beam Irradiation Facilities



#### **Nuclear Energy**






## University of Michigan Ion Beam Laboratory

# University of Wisconsin

Tandem Accelerator Ion Beam

#### Additional & Pending Partners:

- IVEM at the Argonne National Laboratory
- CMUXE at the Purdue University (surface science)
- Ion Beam Laboratory at the Texas A&M University(p)
- I<sup>3</sup>TEM Facility at the Sandia National Laboratory(p)





# **Synchrotron Radiation**



**Nuclear Energy** 



# Illinois Institute of Technology <u>MRCAT Beamline</u>

at Argonne National Laboratory's Advanced Photon Source

# National Synchrotron Light Source-II (NSLS-II)

radioactive materials beamline at Brookhaven National Laboratory (pending)

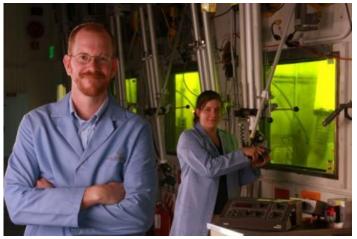


# **Hot Cell Capabilities**





Hot Fuel Examination Facility (INL)


**MIT Reactor Hot Cells** 



Materials Center of Excellence Laboratories (Westinghouse)



Radiochemical Engineering Development Center (ORNL)




Radiochemistry Processing Laboratory (PNNL)



# Post Irradiation Examination



#### **Nuclear Energy**



Electron Microscopy Laboratory (INL)



Nuclear Materials Laboratory (UCB)



Radiochemistry Processing Laboratory & the Materials Science and Technology Laboratory (PNNL)



Microscopy and Characterization Suite (Center for Advanced Energy Studies)



Low Activation Materials Development and Analysis Laboratory (ORNL)



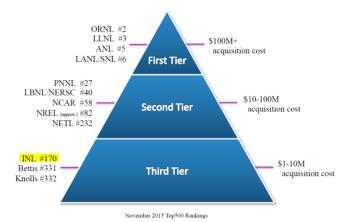


Irradiated Materials Laboratory (University of Michigan)



# NSUF High Performance Computing Resources




**Nuclear Energy** 

#### How does HPC enable DOE missions?

- High Performance Computing (HPC) compliments theory and informs experimental processes.
- HPC functions as a 'microscope' for researchers to better understand physics, chemistry, and engineering principles in ways not otherwise possible.
- HPC resources support NSUF, CASL, NEAMS, NEUP, and GAIN

#### **NSUF Program Support**

- System already in place for quickly granting user access and prioritizing work
- Reporting and accounting systems are being modified to better capture NSUF metrics and science impact
- Implementing tools to improve and simplify user experience
- Ensuring that NSUF and related programs have needed support
  - Priority scheduling for milestones upon request
  - Supporting as-run analysis, thermal analytics, neutronics analytics
  - MOOSE support





Courtesy of Eric Whiting, Director of Scientific Computing





#### **Nuclear Science User Facilities**

# **IRRADIATION EXPERIMENTS**



# **Test Reactor Irradiation Experiment Designs**



#### **Nuclear Energy**

#### Simple Static Capsules (Drop-in)

- Designed for a single temperature
- Instrumented with flux and melt wires

#### Instrumented Lead Experiments

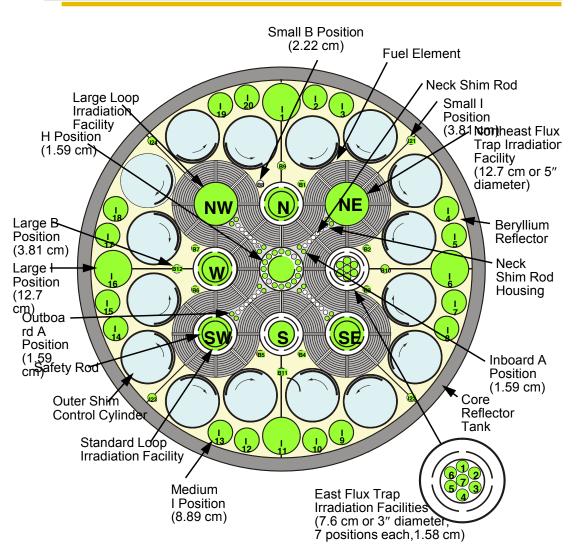
- On-line experiment measurements
- With or w/o temperature control

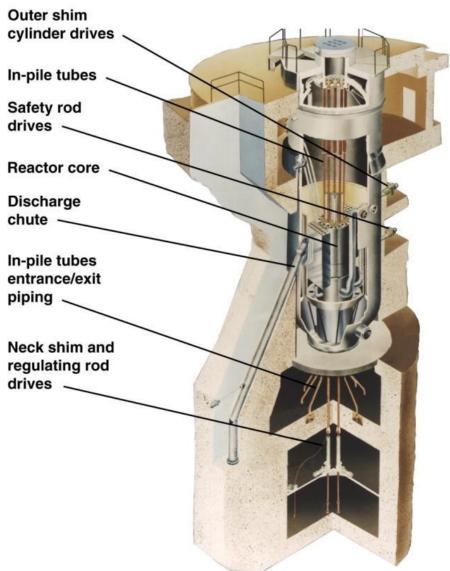
#### Pressurized Water Loops

- Six loops installed in flux traps
- Control pressure, temperature, chemistry

#### Hydraulic Shuttle Irradiation System

Inserted and removed during reactor ops



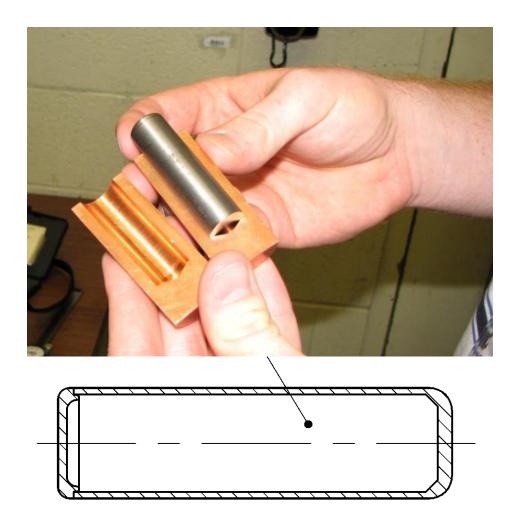






## **Advanced Test Reactor**



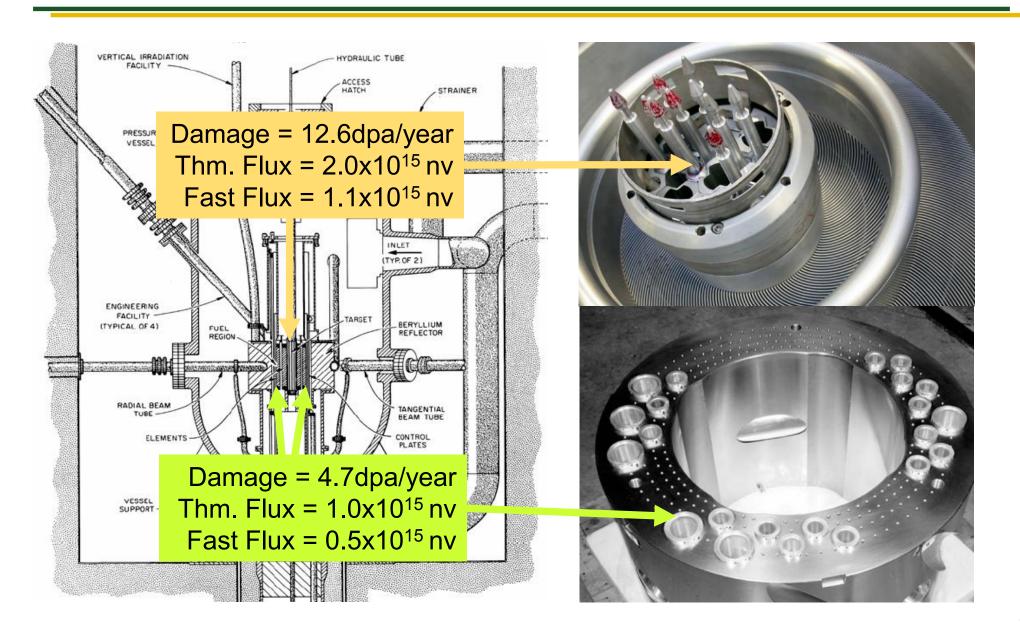







# Hydraulic Shuttle Irradiation System

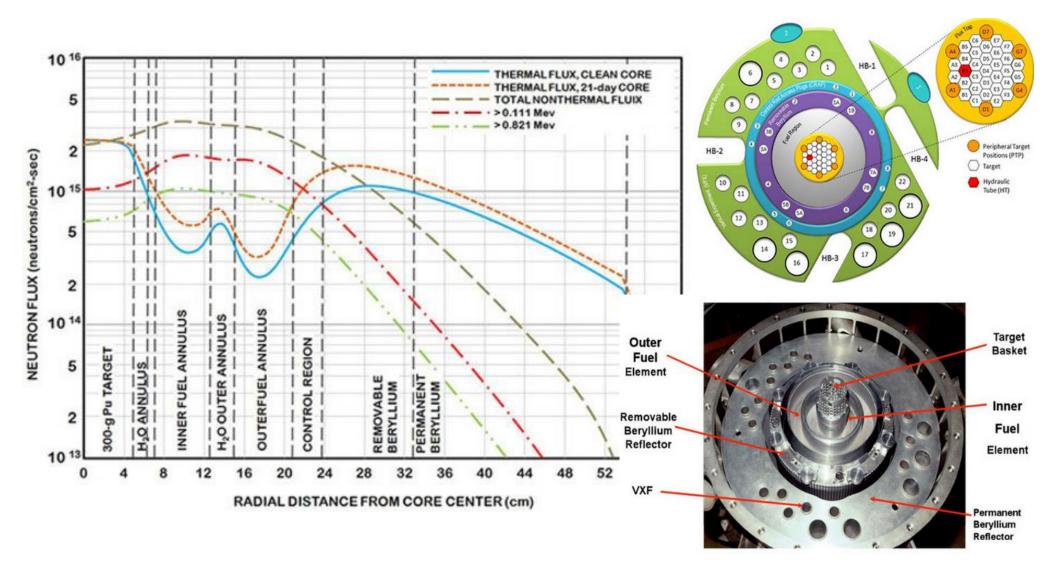



- 14 shuttle capsules
- Simultaneously irradiated
- Flux, at 110 MW: Thermal Flux: 2.5x10<sup>14</sup> n/cm<sup>2</sup>-s Fast (>1MeV): 8.1x10<sup>13</sup> n/cm<sup>2</sup>-s
- <u>Dimensions</u>:
  - ~ 0.55" ID, ~2.1" IL
  - 7 cc useable volume35 gm Contents
- Can irradiate small amounts of fissile material (10mg)





# High Flux Isotope Reactor (HFIR)





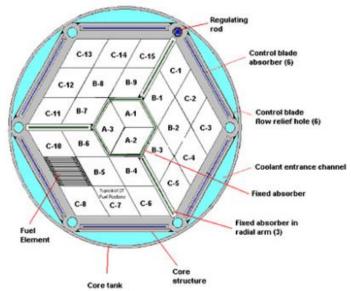


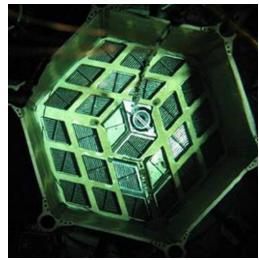

# High Flux Isotope Reactor (HFIR)








# MIT Nuclear Reactor Laboratory




**Nuclear Energy** 

The MITR has the capability to perform a wide range of experiments in the reactor's core.

- An inert gas-filled irradiation tube (ICSA) for sample capsule irradiation at <900 °C (instrumented or un-instrumented),
- Forced-circulation coolant loops that replicate conditions in both pressurized and boiling water reactors,
- High temperature (>900 °C) irradiation facility for materials irradiations in inert gas (He/Ne mix),
- Custom, dedicated facilities for irradiations in unique conditions (e.g., molten fluoride salts).
- Fast flux (>0.1 MeV) 1.2x10<sup>14</sup> n/cm<sup>2</sup>-s.
- Thermal flux 3.6x10<sup>13</sup> n/cm<sup>2</sup>-s

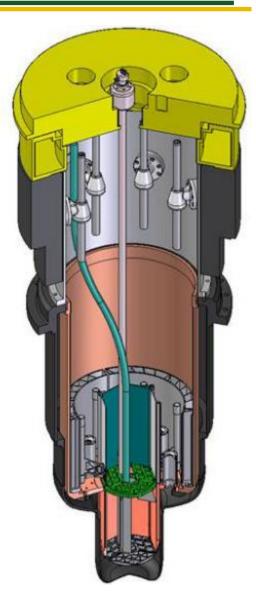






# **MIT Nuclear Reactor**

Laboratory




**Nuclear Energy** 

#### In-Core Sample Assembly" (ICSA)

- sample irradiations in an inert gas atmosphere with TCs.
- The ICSA is cooled by the reactor coolant.
- Active heating or cooling is also potentially available.
- Fuel irradiations ≤100 gm <sup>235</sup>U<sub>eq</sub>
  - not forced circulation loop

| Parameter                     | Permissible values                                                    | Comments                                                                                     |
|-------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Total in-core volume          | 2" ID x 22" long                                                      | Maximum available opening in an in-core dummy fuel element                                   |
| LWR sample space              | - 1" ID x 22" long                                                    | Typical – dependent on autoclave design<br>pressure and materials.                           |
| High temperature sample space | - 0.8" ID x20" long                                                   | Dependent on temperature desired and gamma heating susceptor material choice.                |
| MITR coolant wetted materials | Aluminum, stainless steel,<br>titanium, zircaloy                      | Small amounts of other materials on case by case basis                                       |
| MITR coolant heat flux        | <400 kW/m <sup>2</sup>                                                | No Onset of Nucleate Boiling                                                                 |
| Fissile material content      | <100 g U-235 or equivalent                                            | Fissile materials other than U-235 require pre-<br>approval                                  |
| Facility reactivity           | Secured: <1.8% DK/K<br>Non-secured: <0.5% DK/K<br>Movable: <0.2% DK/K | "Movable" reactivity limits apply to coolant<br>phase change and dissolvable neutron poison. |





# Experimental Parameters from **NSUF** Experiments



| 1. Temperature (magnitude & variation) | Passive or Active in-pile |
|----------------------------------------|---------------------------|
| 2. Neutron Fluence & Spectrum          | Passive or Active in-pile |
| 3. Gamma Fluence & Spectrum            | Active in-pile only       |
| 4. Microstructure                      | PIE                       |
| 5. Density                             | PIE                       |
| 6. Swelling                            | PIE                       |
| 7. Cracking                            | PIE                       |
| 8. Hardness                            | PIE                       |
| 9. Mechanical Strength (tension)       | PIE                       |
| 10. Thermal Conductivity               | PIE                       |
| 11. Heat Capacity                      | PIE                       |
| 12. Coefficient of Thermal Expansion   | PIE                       |
| 13. Creep                              | PIE                       |
| 14. Chemistry/Corrosion                | PIE                       |



# Drop-in / Static Capsule

**Experiments** 



**Nuclear Energy** 

| Project | Reactor       | Position                       | Material          | Parameters                 |
|---------|---------------|--------------------------------|-------------------|----------------------------|
| 1       | ATR           | B <sub>S</sub> 0.875"          | Advanced<br>Fuels | 1,2,4,5,6,14               |
| 2       | ATR /<br>BR-2 | Water-filled capsule           | Advanced<br>fuels | 1,2,4,5,6,7,10,11,12,13,14 |
| 3       | ATR           | A <sub>I</sub> 0.625"          | AM metal          | 1,2,4,6,7,8,9,14           |
| 4       | MITR          | ICSA 1"                        | sensors           | 1,2,3, performance         |
| 5       | ATR           | B <sub>L</sub> 1.5" or<br>loop | AM metal          | 1,2,4,7,9                  |
| 6       | ATR           | B <sub>S</sub> 0.875"          | AM metal          | 1,2,4,9,13,14              |
| 7       | ATR           | B <sub>S</sub> 0.875"          | AM metal          | 1,2,4,10,11,14             |

Often researchers require parameters within a given tolerance interval. Doses range from  $\sim$ 0 to 6 dpa in these experiments



# **Rabbit Experiments**



**Nuclear Energy** 

| Project | Reactor | Position            | Material                 | Parameters   |
|---------|---------|---------------------|--------------------------|--------------|
| 8       | ATR     | B-7(HSIS)<br>0.875" | Advanced<br>Fuels        | 1,2,4,5,6,14 |
| 9       | HFIR    | CFT (HTS)<br>0.500" | Various SiC<br>materials | 1,2,4,6,10   |
| 10      | HFIR    | CFT (HTS)<br>0.500" | PyC-SiC<br>(TRISO)       | 1,2,4,14     |

These experiments cannot have instrument leads connected.

Doses range from ~0 to 2 dpa in these experiments

• HFIR ~ 2dpa in one cycle (25 days)





#### **Nuclear Science User Facilities**

# **INSTRUMENTATION CHALLENGES**

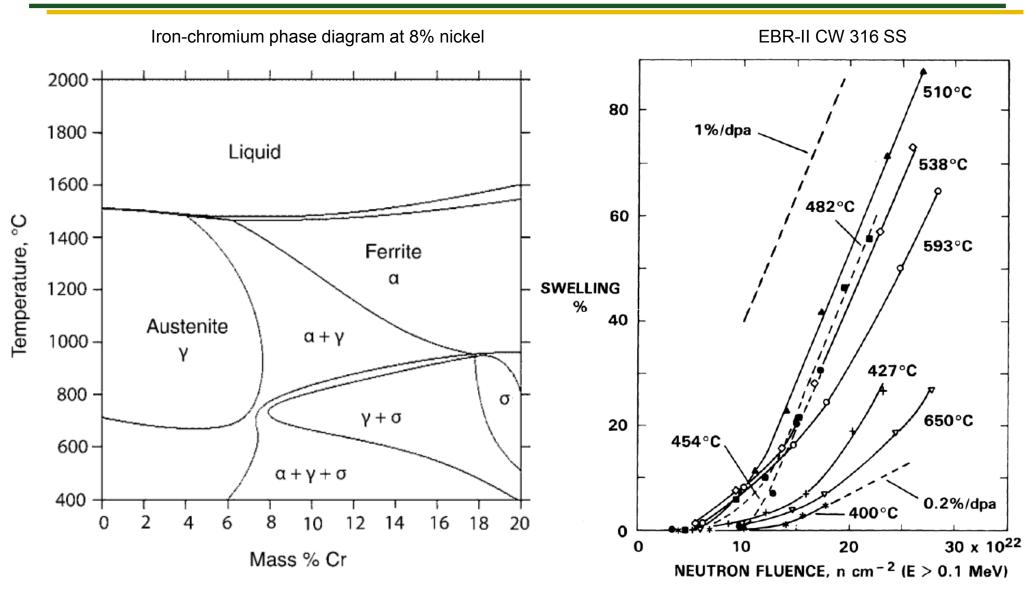


# **Challenge Problem #1**



**Nuclear Energy** 

- 1. Static Capsule Irradiations (drop-ins) are the most often utilized technique.
  - These are (relatively) inexpensive and (relatively) easy to design.
  - What advances can be made in instrumentation that will make these experiments as good as they can be.
  - HSIS irradiations have a similar set of issues.


The challenge is to design sensors that can provide real-time data wirelessly, including sensor power supply.



# **Effects of Temperature**



#### **Nuclear Energy**



ASTM-Stainless Steel for Design Engineers (2008)

Garner and Gelles (1990)



# **Challenge Problem #2**



**Nuclear Energy** 

#### 2. Instrumented Lead Experiments are very expensive (\$4MM)

- They are used because they provide temperature control and live monitoring of irradiation parameters, primarily sample temperature.
- NSUF would like to be able to irradiate capsules from several experiments in a single instrumented lead assembly, each with its own temperature control and suite of sensors.
  - This would reduce the cost per experiment and make the use of this technique more accessible.

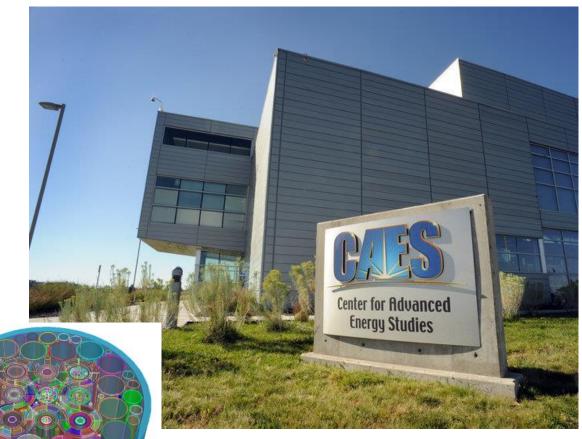


# **Challenge Problem #3**



- 3. How can NSUF leverage all of the available resources to develop advanced in-pile instrumentation while minimizing the design cycle time and minimize the expenditure?
  - Modeling and simulation / model-based engineering
  - Use of ion beams and smaller RTRs to do initial testing.




# Contact Information for NSUF



Nuclear Energy

Brenden Heidrich (208) 526-8117 Brenden.Heidrich@INL.gov





NSUF@INL.gov NSUF.INL.gov NSUF-Infrastructure.INL.gov



# **Nuclear Science User Facilities**







- This information was prepared as an account of work sponsored by an agency of the U.S. Government.
- Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
- References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof.
- The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.





| Static<br>Capsule/HSIS | Instrumented<br>Lead | PWR<br>Loop | Available at ATR                                                            | Available at other<br>MTRs                   | Developmental                                                  |
|------------------------|----------------------|-------------|-----------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|
| x                      | x                    | х           | Melt Wires (peak), SiC<br>(range)                                           | Paint spots, thermal expansion devices (TED) |                                                                |
|                        | x                    | х           | Thermocouples & High-<br>Temperature Irradiation<br>Resistant TCs (HTIR-TC) | Expansion thermometers                       | Fiber optics, noise<br>thermometry, ultrasonic<br>thermometers |

| Sensor                   | Status                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Melt Wires               | Currently used in several ATR NSUF irradiations. Both quartz and vanadium encapsulation available for wires with melting temperatures between 85 and 1455 °C.                                                                                                                                                                                                                                                             |
| SiC Temperature Monitors | Currently used in several ATR NSUF irradiations.                                                                                                                                                                                                                                                                                                                                                                          |
| HTIR-TC                  | Initial out-of-pile testing completed. In-pile testing (in the first Advanced Gas Reactor (AGR-1) NGNP fuel irradiation test) and sensor enhancement evaluations completed;<br>HTIR-TCs provided to MIT and IFE/HRP. Additional HTIR-TCs being fabricated for NGNP program in FY14.                                                                                                                                       |
| Ultrasonic Thermometers  | FCRD program funded first two years of a three year effort to develop and evaluate an<br>enhanced prototype. Additional funding required to complete prototype evaluations and<br>design optimization. Although prototype is focused on use of magnetostrictive transducers,<br>deployment will benefit from MITR test to compare irradiation-related survivability<br>of piezoelectric and magnetostrictive transducers. |



# Instrumentation Summary



| Parameter                 | Static<br>Capsule/HSIS | Instrumented<br>Lead | PWR<br>Loop | Available at ATR     | Available at other MTRs                                               | Developmental                                       |
|---------------------------|------------------------|----------------------|-------------|----------------------|-----------------------------------------------------------------------|-----------------------------------------------------|
|                           | x                      | х                    | х           | Flux wires and foils |                                                                       |                                                     |
| Neutron Flux &<br>Fluence |                        | x                    | x           |                      | detectors, miniature fission                                          | moveable SPNDs,<br>micro-pocket<br>fission chambers |
| Gamma<br>Heating & Flux   |                        | х                    | x           |                      | Calorimeters, gamma<br>thermometers, self-<br>powered gamma detectors |                                                     |

| Sensor                            | Status                                                                                                                                                                                                                                                                                               |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neutron Dosimetry Wires and Foils | Various flux wires and foils available. Vanadium encapsulation available.                                                                                                                                                                                                                            |
| SPNDs and fission chambers        | Specially-developed fixtures designed, fabricated, and installed at ATRC. In FY13,<br>additional evaluations of detectors completed. Additional ATRC evaluations planned<br>for FY14. In addition, SPND will be included in NEET-funded MITR. Development of<br>MPFDs for ATRC evaluations underway. |
| Gamma thermometers and SPGDs      | Currently used at HBWR; SPGDs will be included in NEET-funded MITR irradiation in FY14.                                                                                                                                                                                                              |



# Instrumentation Summary **Dimensional**



| Parameter           | Instrumented<br>Lead | PWR<br>Loop | Available at ATR      | Available at other<br>MTR                        | Developmental                       |
|---------------------|----------------------|-------------|-----------------------|--------------------------------------------------|-------------------------------------|
| Dimensional Changes | x                    | х           | LVDT-based elongation | diameter gauge                                   | ultrasonic techniques, fiber optics |
| Crud Deposition     |                      | x           |                       | diameter gauge with<br>neutron detectors and TCs |                                     |

| Parameter                                    | Sensor                      | Status                                                                                                                                                                                                                                                   |
|----------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | LVDTs                       | Out-of-pile testing completed on developmental LVDT that resists high temperature degradation and eliminates Curie temperature effects.                                                                                                                  |
| Flongation Crud                              | Diameter Gauge              | Currently used in the Halden Boiling Water Reactor (HBWR) for detecting swelling, corrosion, and crud buildup. Three year LDRD initiated in FY14.                                                                                                        |
| Elongation, Crud<br>deposition,<br>Corrosion | Ultrasonic<br>Techniques    | Scoping tests completed on elongation prototype. Prior to deployment, additional prototype out-of-pile testing needed and results from NEET-funded MITR piezoelectric and magnetostrictive transducer irradiation test needed.                           |
|                                              | Fiber Optic<br>Techniques   | FCRD funded first two years of a three year effort to develop and evaluate the accuracy of a candidate probe. Prior to deployment, an instrumented lead test needed to evaluate fiber optic survivability in radiation environments.                     |
| In-Pile Creep Test Rig                       | LVDT-based rig with bellows | Design developed and prototype evaluated at PWR conditions in a laboratory autoclave.<br>Enhanced design, with variable load capability, developed and evaluated in a laboratory<br>autoclave. Both designs developed for future use in an ATR PWR loop. |



# Instrumentation Summary



| Parameter                            | Instrumented<br>Lead | PWR<br>Loop | Available at ATR                          | Available at other<br>MTR                  | Developmental                                              |
|--------------------------------------|----------------------|-------------|-------------------------------------------|--------------------------------------------|------------------------------------------------------------|
| Crack Growth Rate                    |                      | x           |                                           | Direct current potential drop technique    |                                                            |
| Thermal<br>Conductivity              | x                    | x           | Transient Hot-Wire<br>Method Needle Probe | Degradation using signal<br>changes in TCs |                                                            |
| Fission gas (amount and composition) | x                    | x           | on-line sampling,<br>pressure gauge       | LVDT-based pressure monitors               | acoustic measurements<br>with high-frequency<br>echography |

| Parameter               | Sensor                                        | Status                                                                                                                                                                   |
|-------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | DCPD methods<br>with CT<br>specimens          | Currently used at HBWR; Investigations initiated in 2012.                                                                                                                |
| Crack Growth            | Ultrasonic<br>Techniques                      | Funding source needed for laboratory evaluations. Prior to deployment, results of piezoelectric and magnetostrictive transducer irradiation test at MITR needed.         |
|                         | Fiber Optic<br>Techniques                     | Funding source needed for laboratory evaluations. Prior to deployment, an instrumented lead test needed to evaluate fiber optic survivability in radiation environments. |
| Thermal<br>Conductivity | Transient Hot-<br>Wire Method<br>Needle Probe | Prototype design developed and initial laboratory testing completed. Prototype THWM probe prepared and shipped to CEA and being prepared for shipment to IFE/HRP.        |



# **NSUF Instrumentation Development Plans**





#### 43