

Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

> Yanliang Zhang Boise State University NEET2

> > October 12-13, 2016

Project Overview

Nuclear Energy

Goal, and Objectives

- Develop high-efficiency and reliable thermoelectric generators (TEGs)
- Demonstrate self-powered wireless sensor nodes (WSNs)

Participants

- Yanliang Zhang, Boise State University;
- Brian Jaques, Boise State University;
- Vivek Agarwal, Idaho National Laboratory;
- Zhifeng Ren, University of Houston.

Schedule 01/2015 - 12/2017

Year 1	 Determine and profile WSN power consumption Select thermoelectric materials with optimal performance Study irradiation effect on thermoelectric materials
Year 2	 Develop a TEG and WSN simulator Design TEG of sufficient power output Complete analysis of irradiation effect
Year 3	 Fabricate the TEG and test the TEG under irradiation effect Demonstrate the TEG-powered WSN prototype

Background and motivation

- TEG is very compact and reliable
- Heat sources are very abundant in nuclear power plant and fuel cycles
 - The nanostructured bulk thermoelectric materials have significantly higher efficiency and potentially improved radiation resistances over commercial bulk

Accomplishments

- The team achieved the following milestones for FY16
- Fabricated high-temperature and high-power-density thermoelectric generators (TEGs)
- Developed flexible TEGs by screen printing
- Performed comprehensive study of irradiation effect on thermoelectric materials
- Established wireless sensor node power requirements
- Built initial self-powered wireless sensor node prototype

ENERGY TEG Device Testing Results

- Simulation is done with ideal electrical and thermal contacts
- Actual device power density lower than simulation due to parasitic losses

Flexible thermoelectric generator fabricated by screen printing

Nuclear Energy

- BSU developed a novel additive printing process to fabricate flexible TE materials and devices
- The printed flexible film showed very high ZT of 0.43, among highest in printed materials
- A flexible thermoelectric device produces a high power density of 4.1 mW/cm² with only 60 °C ΔT

T. Varghese, C. Hollar, N. Kempf, C. Han, D. Estrada, R. J. Mehta, **Y. Zhang**, High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals, *Scientific Reports*, 6, 33135, 2016.

Proton irradiation effect on

nanostructured thermoelectric materials

Proton irradiation effect on

Nuclear Energy

nanostructured thermoelectric materials

- A 35 µm thick film was also measured before and after irradiation
- 25% reduction in electrical conductivity at room temperature, 18% reduction at 200° C
- No change in Seebeck coefficient
- Overall 10% reduction in thermoelectric figure of merit ZT

Gamma irradiation: in-situ resistance testing

- Average dose rate: 6.14 kGy/hour
- Total received dose: 2360 kGy

- ~3.5% increase in resistivity of commercial BiTe module
- No measureable change in any nanostructured bulk half-Heusler device

Integration of TEG and WSN to demonstrate self-powered WSN

- Built and tested a self-powered wireless sensor node powered by TEG
- The WSN is based on Zigbee communication
- Low power consumption of < 0.4 Watts while running
- Remote capability to view and log current data through a secure Zigbee connection
- Transmission distance of up to 120
 meters
- No interference with existing wireless networks

Design maximum power point tracking algorithm

Nuclear Energy

- Implemented extremum seeking control (ESC) algorithm for Maximum Power Point Tracking (MPPT) in MATLAB®.
- Compared the result with Perturb and Observe (P&O) algorithm and with fixed duty-cycle operation

Block diagram of ESC Algorithm implemented in MATALB

Temperature (C)	Theoretical P(W)	P&O P(W)	ESC P(W)	Fixed duty cycle P(W)
450	0.04299	0.04221	0.04280	0.03680
400	0.02952	0.02876	0.02906	0.02704
350	0.01869	0.01814	0.01834	0.01576

Comparison of estimated MPP using P&O and ESC algorithms.

Technology Impact

Nuclear Energy

Impact on overall NE mission and the nuclear industry

- Address critical technology gaps in monitoring nuclear reactors and fuel cycle.
- Enable self-powered WSNs in multiple nuclear reactor designs as well as spent fuel storage facilities.
- Cost savings by eliminating cable installation and maintenance.
- Significant expansion in remote monitoring of nuclear facilities.
- Significantly improve sensor power reliability and thus safety in nuclear power plants and spent fuel storage facilities.

Conclusions

- Developed high-temperature and high-power density TEGs
- Developed flexible TEGs for power harvesting near ambient temperature
- Performed comprehensive study on irradiation effect on thermoelectric materials. The nanostructured TE materials showed robust performances under proton and gamma irradiation
- Built a WSN and tested the power consumption based on Zigbee protocol, and demonstrated an initial self-powered WSN prototype using a compact TE generator
- The TEGs we developed showed promises to be used for power harvesting in wide range of nuclear power plant facilities.

Nuclear Energy

Addition information

Enhanced thermoelectric efficiency in nanostructured materials

Nuclear Energy

• Our nanostructured thermoelectric materials have shown 30-50% ZT increases

Measuring thermoelectric property changes before and after radiation

Nuclear Energy

Simultaneously measure thermal conductivity and Seebeck coefficient

Approach 2: Nanostructured Thin Films

Entire depth is irradiated

Irradiation effect on nanostructured thermoelectric materials

Nuclear Energy

- Material studied: N-Type half-Heusler Hf_{0.25}Zr_{0.75}NiSn_{0.99}Sb_{0.01}
- Irradiation conditions: 2.5 MeV protons at 100 nA and 2.10¹⁶ ions/cm²
- A bulk bar with selected regions masked by copper bridges was irradiated
- Using SThM, we compare thermal conductivity and Seebeck coefficient of irradiated and un-irradiated regions on the same bar at the same time

Dashed box shows measurement area

 ~2500 measurements in each region

Gamma irradiation: in-situ resistance testing

Nuclear Energy

Commercial BiTe Device

Gamma source: Co⁶⁰