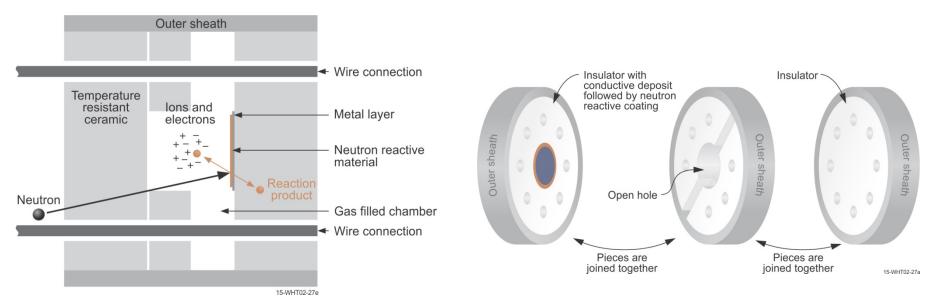


### **Nuclear Energy**

### Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors Troy Unruh Idaho National Laboratory Nuclear Energy Enabling Technologies

October 12-13, 2016




# **Project Overview**

**Nuclear Energy** 

#### Goal, and Objectives

 Develop and test high temperature capable (to 800 °C) Micro-Pocket Fission Detectors (HT MPFDs), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package.



**Micro-Pocket Fission Detector Theory of Operation** 

Micro-Pocket Fission Detector Diagram

October 12, 2016

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors <sup>2</sup>



## **Project Overview**

Nuclear Energy

#### NEET Participants

- Troy Unruh and HTTL Staff; Idaho National Laboratory
- Douglas McGregor, Michael Reichenberger and Sarah Stevenson and SMARTLab Staff; Kansas State University
- Jean-François Villard and CEA Instrumentation Staff; Commissariate a l'energie atomique

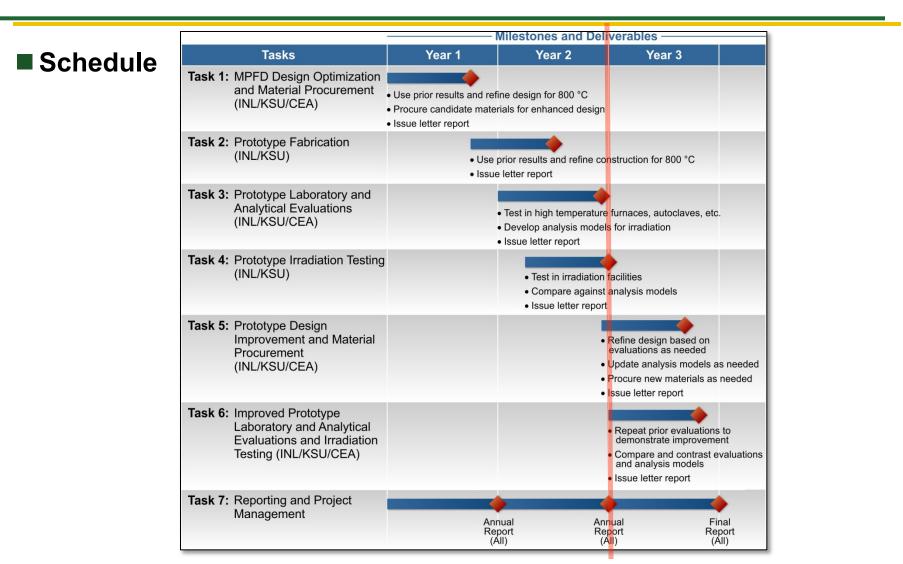











energie atomique · energies alternatives

3



### **Project Overview**

#### **Nuclear Energy**



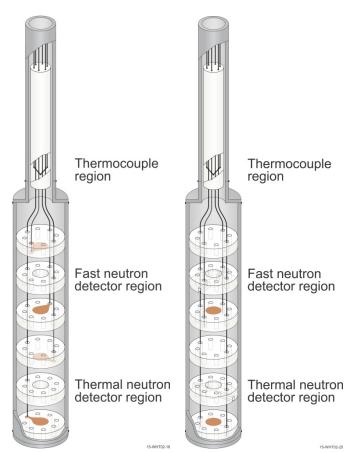
October 12, 2016

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors


4



Nuclear Energy


### FY16 Milestones, Deliverables and Outcomes

- Design improvements
  - Parallel plate to parallel wire design
  - Smooth and machined alumina





Smooth MPFD alumina (left) and machined alumina (right)

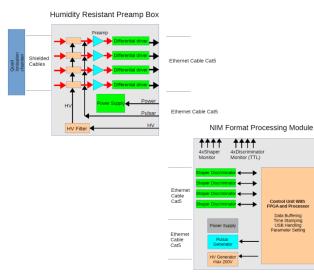


Parallel plate design (left) and parallel wire design (right)

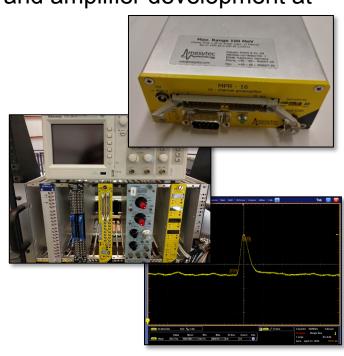
October 12, 2016

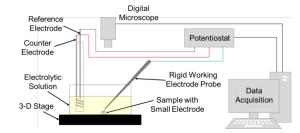
Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors

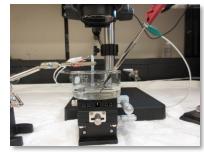


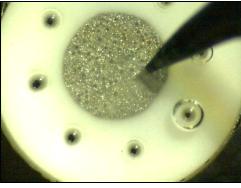

Nuclear Energy

### FY16 Milestones, Deliverables and Outcomes


 Received HT MPFD components from KSU for assembly (M3), 3/31/2016


USB


 Revise electroplating and amplifier development at KSU (M4), 8/12/2016













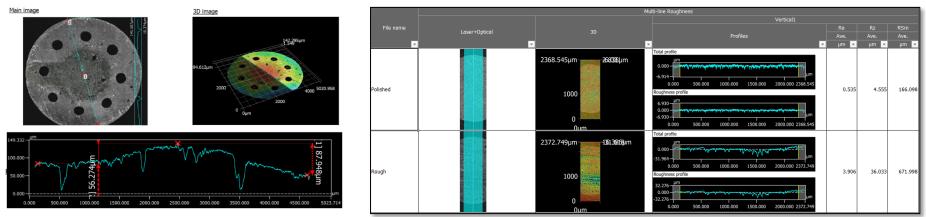

**MPFD** electronics testing

**MPFD** electrodeposition equipment

6

October 12, 2016




Nuclear Energy

#### FY16 Milestones, Deliverables and Outcomes

- Fission material characterizations underway
  - Idaho State University (ISU) MS student (funded by TREAT IRP)
    - Alpha counting
    - Back-to-back fission chamber comparisons
    - 3D confocal laser scanner
    - ISU reactor measurements

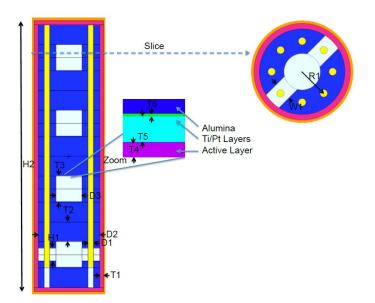


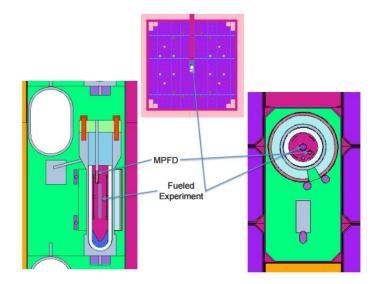
MPFD fissile deposit characterization in ISU laboratory



3D laser scans of MPFD (non-fissile) surface roughness

#### Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors


7




Nuclear Energy

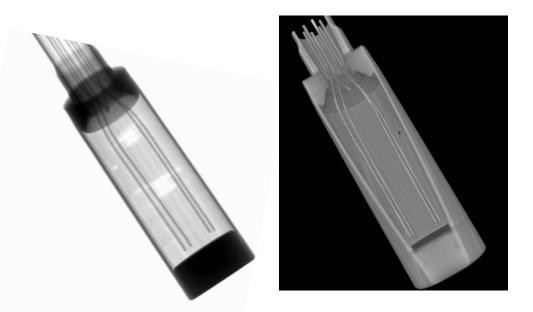
#### FY16 Milestones, Deliverables and Outcomes

- MCNP model developed for ATF-3 deployment (ATF-3 funded)
  - Explicitly model MPFD response
  - Determine optimal MPFD location in test

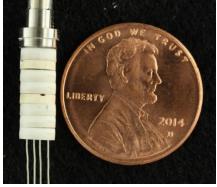




MCNP Transient MPFD model (left) and location in experiment (right)


October 12, 2016




Nuclear Energy

### FY16 Milestones, Deliverables and Outcomes

- Assembled HT MPFD at INL (M2), 7/31/2016
  - X-ray and 3D CT analysis



X-ray (left) and 3D CT (right) images of MPFD showing wire connections



MPFD components prior to final assembly



Micro-focus 3D CT scan of MPFD

9

October 12, 2016

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors



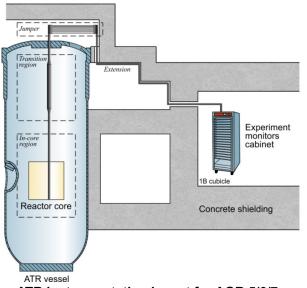
Nuclear Energy

#### FY16 Milestones, Deliverables and Outcomes

- Issue "NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report, INL/EXT-16-40053" (M2), 9/29/2016
- Numerous papers and presentations of the HT MPFD technology

October 12, 2016

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors <sup>10</sup>




### **Crosscutting Accomplishments**

#### **Nuclear Energy**

#### Advanced Gas Reactor (AGR) Deployment

- AGR-5/6/7 Irradiation in ATR (funded by AGR)
  - HT MPFD with Type N thermocouple
  - Irradiation for entire test (~3 years)
  - Irradiated with other advanced sensors
  - Electronics cabinet at ATR

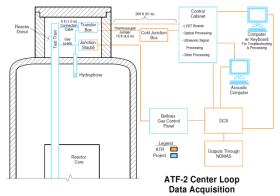




Electronics Cabinet for AGR 5/6/7

October 12, 2016

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors




### **Crosscutting Accomplishments**

Nuclear Energy

### Accident Tolerant Fuel (ATF) Deployments

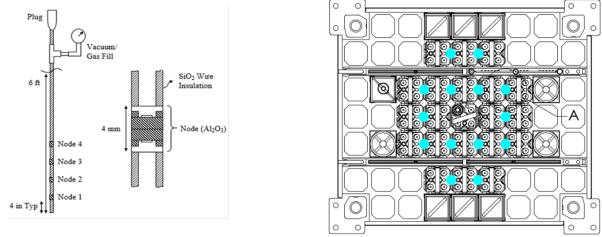
- ATF-2 Sensor Qualification Test in ATR Irradiation
  - HT MPFD (Irradiation funded by ATF-2)
  - Irradiation for one ATR cycle
  - Irradiated with other advanced sensors
- ATF-3 multi-Static Environment Rodlet Transient Test Apparatus (multi-SERTTA) Irradiation
  - TREAT-designed MPFD (Irradiation funded by ATF-3)
  - Irradiation for low power calibration and high power transient
  - Four fission chambers to capture transient
  - No thermocouple



#### ATF-2 Data Acquisition layout



ATF-3 MPFD drawings




### **Crosscutting Accomplishments**

Nuclear Energy

#### Nuclear Energy Advanced Modeling and Simulation (NEAMS) Deployment

- A Transient Reactor Physics Experiment with High-Fidelity, 3-D Flux Measurements for Validation and Verification
  - Kansas State University led: Dr. Jeremy Roberts
  - University of Wisconsin-Madison reactor
  - Specially designed MPFD wands deployed for steady state and transient response



MPFD wands (left) and locations in University of Wisconsin-Madison reactor (right)

October 12, 2016

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors <sup>13</sup>



### **Technology Impact**

Nuclear Energy

# Advanced sensor for DOE-NE programs requiring real-time flux detection

- Flexibility (variable sensitivities, lifetimes and detector responses)
- Neutron sensitive (BOTH fast and thermal)
- Temperature sensitive with integral high-temperature thermocouple
- Compact size
- Radiation resistant
- High temperature and pressure resistant
- High accuracy, high resolution
- Fast response
- Long lifetime

# State-of-the-art sensor positions U.S. for leadership in irradiation testing

- Minimizes flux perturbation associated with typical real-time in-core sensors
- Eliminate uncertainty with transient correction factors
- Higher fidelity data for modeling and simulation of materials and fuels<sup>1</sup>
- Permits 3D modeling and triangulation of data for validation<sup>1</sup>

October 12, 2016

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors <sup>14</sup>

J. Roberts, et al., "FY15 NEUP: A Transient Reactor Physics Experiment with High-Fidelity, 3-D Flux Measurements for Validation and Verification"





Nuclear Energy

- Compact, multi-purpose advanced neutron detector is essential for supporting accelerating data collection from various irradiation testing programs
- HT MPFD will be deployed by several DOE-NE irradiation testing programs in FY17 and beyond
- FY16 HT MPFD milestones completed successfully and on schedule