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Project Overview

B Goal: Develop and evaluate a standardized framework for next-
generation online monitoring applicable to current and future
nuclear systems

B Participants:
e PNNL (Pradeep Ramuhalli, Ramakrishna Tipireddy, Megan Lerchen)
e University of Tennessee Knoxville (Jamie Coble, Anjali Nair, Sam Boring)
e AMS (Brent Shumaker)

B Schedule
e Three years (FY 2015 - FY 2017)
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Objectives

H Develop next-generation online
monitoring applicable to current
and future nuclear systems

e Apply data-driven UQ to develop

methods for real-time calibration
assessment and signal validation

Signal Validation

e Robust virtual sensors to augment s O =

L] L] L] — -H 1

available plant information T 38 : c

Technologies f q g c Uncertainty )

e Techno oglles or aqtorpate sensor i AT e e »

response-time monitoring - _@ 2
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e Considerations for emerging s 3 g a
I&C technologies AdVallEs

Algorithms

Fault Trending
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Project Background

B Measurement reliability key to safe, economic and
secure operation of nuclear systems

e [nterval-based recalibration used to assure reliability

B Current practices have several drawbacks

Time consuming and expensive

Sensor calibration assessed infrequently

Contributes to unnecessary radiological dose
Unnecessary maintenance may damage healthy sensors

Potential for limited opportunities for maintenance in
future nuclear systems

Different failure mechanisms for next-generation sensors
and 1&C

—— Cold plenum
—— Hot plenum

Control rods

Steam
generator

Turbine  Generator

i

Condenser

Heat sink

Electrical
pov[ver

——




ENERGY Sensor Performa_mc_e_Monltorlng_j
can Improve Reliability of Sensing

Nuclear Energy

WENTOpN
& D
A &
>/ A
S ~ -
2) )
7S >
ZATES O%

B Online monitoring (OLM) supports condition- =T -
based calibration of key instrumentation

B OLM technologies can
e Temporarily accommodate limited sensor failure
e Provide indications for measurements that cannot be
made (virtual sensors)

e Ensure reliability of next-generation sensors and
instrumentation through formal methods for
uncertainty quantification

e Support extended sensor calibration cycles and
reduce or eliminate TS-required periodic
recalibration
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Technology Impact

B Framework for next generation OLM that enables
e Recalibration needs assessment for dynamic and steady-state operation

e Short-term operation with a limited number of failing sensors, through the use
of virtual sensor technology

e Ability to derive plant information that currently cannot be measured using
virtual sensors

e Monitoring and detection of degradation in sensor response time
e Predictive (over short-term) assessment of sensor failure
e OLM framework for emerging I&C technologies

B Supports DOE-NE research objectives*
e Improve reliability, sustain safety and extend life of current reactors
e Improve affordability of new reactors

*Nuclear Energy Research and Development Roadmap, April 2010



U.S. DEPARTMENT OF

ENERGY

Nuclear Energy

PENT O
o 2
&7 e
S £
& =
7, g
& &
2 >
SZiTES O'g

Research Tasks

M Signal validation and virtual sensors
e Evaluate how uncertainty drives minimum detection limits and acceptance criteria

e Estimate expected measurement values (and associated uncertainties) for
replacing faulted sensors

e Evaluate the effect of using virtual sensors on OLM and OLM uncertainty
e Develop guidelines for condition-based sensor recalibration

B Assess impacts of next generation sensors and instrumentation
e Requirements definition for OLM in next generation 1&C
e Gaps assessment: Map algorithms (from other tasks) to requirements

B Response time OLM
e Acceptance criteria development
e Adapt research in signal validation for response time OLM

B Verification and validation based on data from a suitable test-bed or
operating plant



U.S. DEPARTMENT OF

PENERGY  Testbeds Simulate Heat
Nuclear Energy Exchanger Operations

SECONDARY PUMP

B Simple heat exchanger loop R

B Sensor and instrumentation
models coupled to loop model

® Prescribed uncertainty levels to
directly study effects on sensed
values and OLM results

e Normal and anomalous conditions e

SECONDARY COOLING LOOP

PRIMARY FLOW
PRESSURE CONTROL
VALVE

PRIMARY PUMP

1&C026-10

10 1 FT-41  DIFFERENTIAL PRESSURE ROSEMOUNT
7 2 FT-31  DIFFERENTIAL PRESSURE (SMART) ROSEMOUNT
3 FT-3-2  DIFFERENTIAL PRESSURE BARTON
! 4  FT-1-1  DIFFERENTIAL PRESSURE FOXBORO
5  FT-1-2  DIFFERENTIAL PRESSURE FOXBORO
6 FT-1-4  DIFFERENTIAL PRESSURE (SMART) BARTON
7 TE-1-2  RTD (SMART) ROSEMOUNT
8 TC-2-1 THERMOCOUPLETYPE-J (SMART)  ROSEMOUNT
9  FT-2-1  DIFFERENTIAL PRESSURE SCHLUMBERGER
10 CTRL-TEMP RTD (SMART) ROSEMOUNT
11 TC-HX-OUT THERMOCOUPLE TYPE-J OMEGA
12 FT-2-3 DIFFERENTIAL PRESSURE HONEYWELL
13 TC-HX-IN THERMOCOUPLE TYPE-J OMEGA
15 14 CTRL-PSR GAUGE PRESSURE FOXBORO
E 15 PT-2 GAUGE PRESSURE ROSEMOUNT
16 TC-LOOP-FAR  THERMOCOUPLE TYPE-E OMEGA
17 TC-PUMP-OUT  THERMOCOUPLE TYPE-K OMEGA
Heat Motor Pump
Exchanger
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Signal Validation using
Nuclear Energy BayeSian Inference MOdel

B Uncertainty quantification of OLM
residuals

® Focus on differentiability of errors
of interest, such as model
inadequacy and instrument errors
e Model inadequacy is assumed
stationary across time and operating
conditions
B Bayesian inference and Gaussian
process models applied for
predicting model inadequacy
values

B Model trained and tested using
Nuclear coolant data and the flow
loop data collected by AMS

e Normal and anomalous conditions

=~ 0

~mOO<g

BAYESIAN INEERENCE MOQREI

/ TRAINING

\  PREDICTION/

\ IMPLEMENTATION
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Model process overview

Observation /Data Observational Error Hyper
~ - parameters
r(ZPa)i):y(Zi’wi)_Zi =5(Zi=a)z)+ei+p77(miali) (¢ .8)
%,_/ %,_/ \ J
Predictive Model . Model Inadequacy ) Sensor Degradation Error I
GP 1 GP 2 GP parameters Estimate of
(W, 0% (@.B)
u=fp,var=0.¢ \
Process N Estimatze
Data of (u, o)
On the basis of the defined priors in the form

of GP1 and GP2 , the Bayesian inference

model ié implemented G.Ps. ‘)
(Model prediction , Model

inadequacy error )

The distribution of interest : the model Drift/ A | Updated knowledge
inadequacy is updated using data and various fl no_ma Y le— about error
parameter estimates. This is used to bound detection distribution

the error and uncertainty of the prediction

APPLICATION

10
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Results

® Current model inadequacy | R e
predictions meets the model .
assumptions under normal steady | |
state and transient conditions

B Evaluating performance under N f
faulted conditions '

e Current system performance is not . : —— . - ”

sufficiently robust to faults

110

T T
——— OLM Residuals
Model Inadequacy

98% Confidence Bounds
Control Temperature

B Future work will integrate with

forced flow loop data and models
at UTK

<4 100
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Virtual Sensing

B Data-driven virtual sensor models
e Models used for fault detection are often
applicable for virtual sensing

— Each model has pros and cons relative to
virtual sensing

e Models sensitive to training data used to
derive parameters

— Data sets must include fault data to allow
for robust prediction by some models

e Alternative independent variables may
enable more robust estimates at the
expense of robust fault detection

— Currently being evaluated
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Sensor Response OLM

B Automated Sensor Response OLM
e Dynamic response is a key indicator of e

sensor system performance and health

e Traditional noise analysis methodology

relies on knowledge from experienced
engineers

e Expert knowledge will be combined with
automated analysis tools to provide
accurate and repeatable sensor response
results that can be integrated with other
OLM analysis techniques

B Noise Testing and Algorithm
Development

e Acquire high-frequency noise data on
nuclear-grade transmitters in the test loop

e Simulate voids, leakages, and sensing line
blockages to facilitate the development of
robust sensor response evaluation and
diagnostic algorithms

PSD (Volts"2/Hz)

Frequency (Hz)
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EData recorded from 4 protection sets, 44 sensors

B35 minutes of data per protection set, 2000 S/sec

BRCS Flow and SG Level — 28 transmitters

BPressurizer Pressure and Steam Pressure — 16 transmitters
BENoise data converted to spectrums

mData and spectrums analyzed using existing methods

BAR models created and evaluated

B Results compared

14
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Example of Steam
Generator Level Data

AMS Propristary © 2016

OLM View Data

Steam Generator Level

'z
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4-Loop PWR Data
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(«) Window | Data Quality Autoregressive | Compare | Results |
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1CFLTS500 CAT0002.psd 0.0305 : 1000 204 : 1024
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CAT0002.psd 0.0305 : 1000 204 : 1024
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OLM Dynamic Analysis

| WB PSD Window | Blocks : Block Size| Channel | Trim Block Size | Decimator | Trim Low Freq. (Hz)| Trim High Freq. (Hz)| AR Order|
20 0.09: 49.998477 34

18-Aug-2016 14:05

EISIEY
AR Method | 4|
Least-Squares

Least-Squares
Least-Squares

Test Date 13-Jul-2016 10:51:31

7653
0.097653
0.097653

1024
1024 20

1 49.998477 34
2 1024 20

49.998477 34

El 1024 | 20 0.097653 49.998477 34 | Least-Squares

AR Method

Least-Squares

AR Order AR Array Size

) 12 & 30 J
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Response Time vs. Order

‘ Process AR | Dynamic

T=0.326 (seq)
3+

Response Time
S © O ¢ o

AR Order

Error vs. Order

Error

0

2
AR Order

Impulse Response

25.0-)
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0. 5'00 0.7'50
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0.000 "
0.000 0.250
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Automated Model Fitting and Analysis

15
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Auto AR Manual AT

e Tag (sec) (sec) (sec) ltem# Service Tag Auto AR Manual AT
1 RCFT-001  0.27 0.29 -0.02 (sec) (sec) (sec)
2 RCFT-002  0.31 0.31 0.00 1 PZPT-001 0.37 0.38 -0.01
3 RCFT-003 ~ 0.30 0.28 0.02 2 Pzr PZPT-002 0.54 0.55 -0.01
p Do e L B L 3 Pressure PZPT-003  0.40 0.43 -0.03
6 RCS RCFT-006 029 028  0.01 4 e 910 0 IO e U
7 Flow RCFT-007 0.22 0.23 -0.01 5 MSPT-001 0.06 0.07 -0.01
8 RCFT-008 0.26 0.26 0.00 6 MSPT-002 0.07 0.08 -0.01
9 RCFT-009  0.24 0.22 0.02 7 MSPT-003  0.06 0.08 -0.02
10 RCFT-010  0.23 0.2 0.03 8 MSPT-004  0.07 0.07 0.00
11 RCFT-011  0.24 0.2 0.04 9 MSPT-005  0.06 0.08 -0.02
12 e IEDILZ UL OB SO O] 10 Steam MSPT-006  0.03 0.04 0.01
13 SGLT-001  0.57 0.62 -0.05
v e Mo T — T 11 Pressure MSPT-007  0.10 0.08 0.02
16 SGLT-004 0.35 0.36 -0.01 13 MSPT-009 0.08 0.08 0.00
17 SGLT-005  0.42 0.43 -0.01 14 MSPT-010  0.08 0.08 0.00
18 SGLT-006  0.34 0.33 0.01 15 MSPT-011 0.09 0.09 0.00
19 SGLT-007  0.34 0.3 0.04 16 MSPT-012  0.07 0.07 0.00
20 SG  SGLT-008 0.38 0.33 0.05
21 Level SGLT-009  0.41 0.39 0.02 Pressure Transmitters
22 SGLT-010  0.37 0.39 -0.02
23 SGLT-011  0.44 0.42 0.02
24 SGLT-012  0.41 0.41 0.00
25 SGLT-013  0.34 0.33 0.01
26 SGLT-014  0.34 0.33 0.01
27 SGLT-015  0.42 0.42 0.00
28 SGLT-016  0.38 0.35 0.03

DP Transmitters
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B Implemented and evaluated initial approaches under each task
e Signal validation, virtual sensing, response time monitoring

B Integration activities begun
B Updates on research status in FY16 (PNNL-25382 , PNNL-25104, PNNL-24702)
B Journal/Conference papers and presentations

Nair, A, and JB Coble, “A High Confidence Signal Validation Technique for Sensor Calibration
Assessment in Nuclear Power Systems.” 2015 ANS Winter Meeting and Technology Expo. November
7-12, 2015: Washington, DC.

Nair, A, S Boring, JB Coble, “High Accuracy Signal Validation Framework for Sensor Calibration
Assessment in NPPs.” 2016 ANS Winter Meeting and Technology Expo. November 6-10, 2016: Las
Vegas, NV.

Nair, Anjali Muraleedharan, "Bayesian Framework for High Confidence Signal Validation for Online
Monitoring Systems in Nuclear Power Plants. " Master's Thesis, University of Tennessee, 2016.
http://trace.tennessee.edu/utk _gradthes/4060

Tipireddy R, ME Lerchen, and P Ramuhalli. 2016. "Virtual sensors for robust on-line monitoring
(OLM) and Diagnostics." Submitted to International Conference on Prognostics and Health
Management (IEEE PHM2016).

Tipireddy R, ME Lerchen, and P Ramuhalli. 2016. "Methodologies for Virtual Sensing in nuclear plant
on-line monitoring." In preparation, for submission to IEEE Trans. Rel.
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Next Steps

M Signal validation

e Complete implementation and testing of sensor status and fault diagnostics
using data-driven UQ

¢ Input to advanced monitoring/control algorithms
H Virtual sensing

e Alternate algorithms for virtual sensing
e Uncertainty must account for spillover of faulty reading into estimate

e Number of allowed virtual sensors, and duration of applicability to be
determined

B Response time OLM
e Implement and verify algorithms for noise analysis
B OLM requirements using emerging I&C technologies

M Verification and validation of algorithms using data from test-beds
as well as data from operating plants

18



U.S. DEPARTMENT OF

ENERGY

Nuclear Energy

PAENTOp
o 2
£ e
S £
& =
7, g
/&
<5 N/
D) 4
SZiTES O'g

Conclusion

B Research focused on addressing high-impact technical gaps to
developing a standardized framework for robust next-generation
online monitoring

B Outcomes enable

e Extended calibration intervals and relief of even limited periodic
assessment requirements

e Assessment of sensor measurement accuracy with high confidence

e Derived values for desired parameters that cannot be directly measured
B Outcomes support

e Improved reliability and economics for current and future nuclear systems

e Deployment of advanced sensors (ultrasonic, fiber optic, etc.) and
instrumentation (digital I&C, wireless, etc.)

19



