All-position surface cladding & modification by solid-state friction stir additive manufacturing (FSAM)

Zhili Feng (PI), Wei Tang, Xinghua Yu, David Gandy, and Greg Frederick

Oak Ridge National Laboratory Electric Power Research Institute

DOE NE AMM Workshop Oct 17-18, 2016

ORNL is managed by UT-Battelle for the US Department of Energy

Objectives

- To develop and demonstrate a novel solid-state friction stir additive manufacturing (FSAM) process for high productivity surface cladding
 - Improve erosion, corrosion and wear resistance,
 - >20% reduction in cost and improvement in productivity and quality.
- Focus on two targeted applications
 - Cladding of reactor internals
 - Fabrication of the transition layer of dissimilar metal welds
- Support on-site repair in addition to construction of new reactors

Background

- Cladding and surface modifications are extensively used in fabrication of nuclear reactor systems. It essentially involves adding a layer of different material to component surface.
 - Cladding of reactor vessel internals to improve erosion, corrosion, and wear resistance
 - Build a buffer layer for dissimilar metal weld (hundreds of them)
- Fusion welding based processes, i.e. various arc welding processes, are typically used for cladding of today's reactors.

Limitations of today's cladding process

Relatively low productivity and high cost

- Cladding rate
 - All position cladding is limited to low deposition rate processes (GTAW, GMAW) due to gravity effect on the molten weld pool
 - High deposition rate processes (ESW, SAW) are limited to flat position.
 - Requires special equipment to rotate large and heavy components.
 - · Limited to components with rotating axis

- Multiple layers (3-5 layers typical) to progressively reduce the "dilution" in the top layer for intended service
 - High deposition rate processes have higher dilution and requires more layers
 - Compounding effect on the productivity and increase in material and labor cost

Limitations of today's cladding process

Detrimental effect on substrate properties

- The excessive heat, especially from the high heat input cladding processes, would degrade the microstructures in the substrate underneath the clad layer
 - Often require costly post cladding heat treatment
 - Especially detrimental to high temperature materials (creep resistance steels etc)
- Reducing the heat in cladding process would be beneficial
 - Especially important to on-site repair

Limitations of today's cladding process

Major barrier in adopting new cladding materials

- More SCC resistance alloys (Alloy 52 vs Alloy 82) in the DM weld for piping systems
- Alloy 52 is prone to ductility dip cracking associated with fusion welding processes

Friction stir welding process

- Friction Stir Welding (FSW) is a new, novel solid-state joining process. A specially designed tool rotates and traverses along the joint line, creating frictional heating that softens a column of material underneath the tool. The softened material flows around the tool through extensive plastic deformation and is consolidated behind the tool to form a solid-state continuous joint.
- Demonstrated success in AI structure welding (NASA, Auto, transportation)

FSW at ORNL

- Light-weight materials for automotive/aerospace applications
 - AI, Mg, Ti alloys
- Concerted effort on FSW of high temperature materials for nuclear and fossil energy applications
 - High-strength steels, ODS alloys, and Ni-based superalloys
 - Tool materials for high-temperature materials (steels, nickel alloys, Ti alloys)
 - Patented multi-layer multi-pass FSW for thick-section structures (reactor vessel, hydrogen storage, etc)
- Modeling
 - Residual stress, Materials flow, Microstructure, Weld performance
- Microstructure characterization

FSW of Superalloys

9 2016 DOE AMM Workshop FSAM

Friction stir welding system for on-site welding of steel pipeline

- Develop and apply the friction stir welding to steel piping systems
- Industry partners: ExxonMobil, MegaStir
- Sponsor: DOE EERE AMO

FSW Improves Properties of Pipeline Steels

Girth weld of API X65 steel for natural gas transmission pipelines

11 2016 DOE AMM Workshop FSAM

Technology development in this project: Friction Stir Additive Manufacturing (FSAM)

- FSAM is a novel extension of FSW
- Based on ORNL's multipass multilayer FSW
- Patent pending process innovations practically eliminate tool failure and tool wear critical to FSAM of high-temperature materials
- The process innovations have potential of much higher cladding rate
 and producing homogeneous microstructure and properties
- Solid-state process also addresses other key shortcomings of fusion welding based cladding process
 - Ease the metallurgical incompatibility constraints in use of new cladding materials
 - Minimize the microstructure and performance degradations of the high performance structural materials
 - Near zero dilution reduces the number of cladding layers for material/cost reduction and increase in productivity

Preliminary results of FSAM cladding

FSAM build of two layers SS304 and one layer alloy 800 on a 304 SS substrate.

Microstructure near the clad bonding interface between two SS304.

Focus of R&D in this project

- Increase cladding rate to 5 to 10 times higher than the allposition GTAW/GMAW cladding processes
- Reduce the number of cladding layers to reach required cladding layer thickness for intended service. Expecting another 50-60% increase in "effective" productivity
- Demonstrate all-position cladding with mechanized FSAM prototype system
- Achieve or exceed the 20% cost reduction target for component fabrication set forth in this FOA

Research Plan

Task 1 FSAM process optimization and scale-up for cladding

- Process optimization for common reactor structural materials
 - Structural steels (SA508), CSEF steels (P91), nickel based super alloys (Alloy 82 and 52), and austenitic stainless steels (308 and 309L)
- Initial developed on 10x10" surface.
- Scale up to 30x30" surface later on
- Ensure complete cladding bonding
- Demonstrate target high cladding rate
- Demonstrate adequate tool life (wear, failure and cost)
- Task 2 Microstructure characterization, property testing and NDE Quality
- Task 3 Fundamentals on thermal-mechanical conditions in FSAM
 - Combined experimental and modeling effort to understand the fundamental factors in FSAM cladding: temperature and material deformation

Research Plan (Cont'd)

- Task 4 Technology Demonstration: Prototypical mock up components production
 - Surface cladding on steel pipe
 - Buttering layer of DM weld

Schedule

Tasks	Year 1				Year 2				Year 3			
Task1: Solid-phase cladding feasibility demonstration and process development	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Feasibility demonstration												
Process development												
Task 2: Solid-phase cladding quality examination and characterization												
NDT												
Mechanical properties test												
Microstructure characterization												
Tool wear study												
Task 3: Understanding FSAM Fundamentals												
Experimental investigation												
FSAM process modeling												
Task 4: Prototypical mock up components production												
Surface Cladding Mockup												
Fabrication of DM Weld Transition Layer												

