

Co-Optima Informational Webinar

John Farrell (NREL) September 15, 2016

Webinar Agenda

- Overview (10 min)
- Thrust I (25 min)
- Thrust II (25 min)
- Crosscutting Activities (20 min)
- Year Ahead (10 min)
- Q&A (30 min)

Goal: better fuels and better vehicles sooner

Fuel and Engine Co-Optimization

- What <u>fuel properties</u> maximize engine performance?
- How do <u>engine parameters</u> affect efficiency?
- What <u>fuel and engine combinations</u> are sustainable, affordable, and scalable?

30% per vehicle petroleum reduction via efficiency and displacement

Light duty fuel consumption (billion gallons/year)

100 **Co-optimized engine** Conventional efficiency (7-14%) petroleum blendstocks Co-optimized low-GHG 50 fuels (16 billion gallons) and the second Ethanol (1st gen) ٥ 2020 2025 2035 2012 2015 2030 2040

Governing Co-Optima hypotheses:

There are engine architectures and strategies that provide higher thermodynamic efficiencies than available from modern internal combustion engines; new fuels are required to maximize efficiency and operability across a wide speed/load range

If we identify target values for the critical fuel properties that maximize efficiency and emissions performance for a given engine architecture, then fuels that have properties with those values (regardless of chemical composition) will provide comparable performance

Parallel efforts are underway

Thrust I: Spark Ignition (SI)

Thrust II: Advanced Compression Ignition (ACI) kinetically-controlled and compression-ignition combustion

Low reactivity fuel

High reactivity fuel

Applicable to light, medium, and heavy-duty engines hybridized and non-hybridized powertrains

Six integrated teams

Thank You

Identifying the best options, subject to many constraints

Approach

Need to explicitly account for uncertainty

Current merit function development approach

Numerically optimized merit function

