

ACHIEVING SUSTAINABLE H₂ FUEL CELL TRANSPORTATION KEY POINTS

- 1. CHANGE REQUIRES CONSTANCY OF PURPOSE
- 2. PRIORITIZE VALUE EQUATION
- 3. COOPERATE

HOW DOES CHANGE ARRIVE IN TRANSPORTATION INDUSTRY?

PERSPECTIVE

AUTOMOBILES ARE - PERSONAL MOBILITY SOLUTIONS

PERSONAL MOBILITY SOLUTIONS HAVE ALWAYS BEEN SUBJECT TO CHANGE

1917 Last Horse Drawn Street Car

HOW DOES CHANGE ARRIVE IN TRANSPORTATION INDUSTRY?

PERSPECTIVE

AUTOMOBILES ARE - PERSONAL MOBILITY SOLUTIONS

PERSONAL MOBILITY SOLUTIONS HAVE ALWAYS BEEN SUBJECT TO CHANGE

End of the Streetcar

HOW DOES CHANGE ARRIVE IN TRANSPORTATION INDUSTRY?

PERSPECTIVE

CHANGE IS COMING AGAIN...

CHANGE IS DRIVEN BY UNLOCKING VALUE

WE ARE SPOILED BY RELATIVE PACE OF ELECTRONICS (MOORE'S LAW) & INSTANT GRATIFICATION

- FOOLED BY APPEARANCE THAT TECHNOLOGY PROGRESSES QUICKLY
- FORGET THINGS RARELY PROGRESS IN STRAIGHT LINES
- OFTEN REQUIRES FITS & STARTS
- REAL CHANGE IS RARELY EASY

A LOOK TO SOME HISTORICAL EXAMPLES

1886 - Karl Benz – (ICE - Gasoline)

 1st Internal Combustion Gasoline Powered "Production Car"

1908 – Henry Ford (Mass Production Model T)

1807 – Francois Isaac de Rivaz (ICE – H₂ Fueled)

1886 - Karl Benz — (ICE - Gasoline)

 1st Internal Combustion Gasoline Powered "Production Car"

1908 – Henry Ford (Mass Production Model T)

1768 – Nicolas-Joseph Cugnot (Steam Powered)

1807 – Francois Isaac de Rivaz (ICE – H₂ Fueled)

1886 - Karl Benz — (ICE - Gasoline)

 1st Internal Combustion Gasoline Powered "Production Car"

1908 – Henry Ford (Mass Production Model T)

1768 – Nicolas-Joseph Cugnot (Steam Powered)

1807 – Francois Isaac de Rivaz (ICE – H₂ Fueled)

1886 - Karl Benz - (ICE - Gasoline)

 1st Internal Combustion Gasoline Powered "Production Car"

1908 – Henry Ford (Mass Production Model T)

140 Years Elapsed

EARLY AUTOMOBILE INFRASTRUCTURE WAS ANYTHING BUT CERTAIN

Road Challenges

Refueling Infrastructure Challenges

FIFTY YEARS AGO - THIS OCTOBER

THE WORLD MET THE FIRST HYDROGEN FUEL CELL VEHICLE

HUMBLE BEGINNINGS

MANY THINGS TAKE TIME THIS IS A MARATHON, NOT A SPRINT

AS IN THE PAST, AUTO INDUSTRY IS UNDERGOING DRAMATIC CHANGE:

- RAPIDLY DEVELOPING TECHNOLOGY
- RAPIDLY SHIFTING ECONOMIC & GEOPOLITICAL INFLUENCES ON ENERGY
- INCREASINGLY MORE STRINGENT REGULATIONS
- NEW BUSINESS MODELS
- CHANGING DEMOGRAPHICS
- EVOLVING CUSTOMER EXPECTATIONS

The rules of the game are changing while we play it

Stakeholders must also change

CONSUMERS EXPECT SEAMLESS AND UBIQUITOUS CONNECTIVITY

The youngest Millennials (ages 18-24) view their mobile phone as most important to their daily lives

CONSUMERS EXPECT SEAMLESS AND UBIQUITOUS CONNECTIVITY

The youngest Millennials (ages 18-24) view their mobile phone as most important to their daily lives

CONSUMERS EXPECT SEAMLESS AND UBIQUITOUS CONNECTIVITY

The youngest Millennials (ages 18-24) view their mobile phone as most important to their daily lives

Sustainable Hydrogen Solutions do NOT rest in simply . . .

- ... Replacing petroleum fuels
- ... Reducing CO₂
- ... Reducing Fuel Cell Vehicle Costs
- ... Deploying a refueling network
- ... Streamlining transportation costs
- ... Increasing public awareness
- ... Increasing station reliability

Sustainable Hydrogen Solutions do NOT rest in simply . . .

- ... Replacing petroleum fuels
- ... Reducing CO₂
- ... Reducing Fuel Cell Vehicle Costs
- ... Deploying a refueling network
- ... Streamlining transportation costs
- ... Increasing public awareness
- ... Increasing station reliability

Must do ALL of these things . . . They are necessary, but <u>NOT</u> sufficient

CONSIDER THE "H₂ ECOSYSTEM" THAT . . .

- Delivers a petroleum-free fuel for < \$0.57 per Gallon Gas Equivalent
- Solves Electrical Grid Challenges from Renewable Energy Deployment (Solar, Wind)
- Maintains vehicle range (300 400 miles) & short refueling times (≤ 3 minutes)
- Doubles light vehicle fuel efficiency
- Reduces CO₂ emissions 45% by 2040
- Uniquely ...
 - Enables renewable grid
 - Provides Value, where other solutions fail

H₂ @ Scale can enable all these things

Future H₂ at Scale Energy System

H2 at Scale HTAC 040616

8

Delivering VALUE with Hydrogen & Fuel Cells

OEMs can deliver these things

- ... Fun-to-Drive Electric Vehicle
- ... "Fast Charging Electric Vehicle"
- ... Long Range, Zero Emission Electric Vehicle
- ... Deliver competitive fuel cell costs
- ... Cross-Cutting Through Multiple Sectors
- ... "H₂ Ecoystem"
- ... Enabling Renewables ... Cost Effectively
- ... Providing Sustainable & Affordable Fuel
- ... Flexibility

REQUIRES COOPERATION . . .

- Public Private Partnership
- Between Multiple Government Stakeholders (Federal Departments, States, etc.)
- Between Competitors "Coopetition"
- Cutting across traditional swim lanes
- Infrastructure & Vehicle Manufacturers
- Transportation & Stationary Systems

H₂USA can help enable all these things

H₂USA PARTICIPANTS - COOPERATION

H₂USA ORGANIZATION CHART

ACHIEVING SUSTAINABLE H₂ FUEL CELL TRANSPORTATION KEY POINTS

1. CHANGE REQUIRES CONSTANCY OF PURPOSE

2. PRIORITIZE VALUE EQUATION

- Compelling Vehicles
- "H₂ Ecosystem"
- H₂ @ Scale

3. **COOPERATE**

- H_2USA

