U.S. Department of Energy Hydrogen and Fuel Cells Program

Energy Efficiency & Renewable Energy

H₂USA Breakout Session Introduction and Objectives

Washington, DC

July 12, 2016

Dr. Sunita Satyapal

Director Fuel Cell Technologies Office U.S. Department of Energy

Reduce GHG emissions by 17% by 2020, 26-28% by 2025 and 83% by 2050 from 2005 baseline Climate Action Plan

By 2035, generate 80% of electricity from a diverse set of clean energy resources Blueprint Secure Energy Future

Double energy productivity by 2030 Department of Energy

Reduce net oil imports by half by 2020 from a 2008 baseline Blueprint Secure

Reduce CO₂ emissions by **3 billion metric tons** cumulatively by 2030 through efficiency standards set between 2009 and 2016

All-of-the-Above Energy Strategy

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 3

"As part of an <u>all-of-the-above energy</u> <u>approach, fuel cell technologies</u> are paving the way to competitiveness in the global clean energy market and to new jobs and business creation across the country."

> - Secretary Moniz, U.S. Department of Energy

"We've got to invest in a serious, sustained, all-of-the-above energy strategy that develops every resource available for the 21st century."

- President Barack Obama

Secretary Moniz at DC Auto Show

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 4

Fuel Cells Market Overview

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 5

Fuel Cell Systems Shipped Worldwide by Application

Source: Navigant Research (2008-2013) & E4tech (2014, 2015)

- Consistent ~30% annual growth since 2010
- Global Market
 Potential in
 10- 20 years*
 \$188

\$14B – \$31B/yr for stationary power \$11B /yr for portable power \$18B – \$97B/yr for transportation

**Fuel Cell Economic Development Plan*, Connecticut Center for Advanced Technology, Inc. January 2008

Fuel Cell Electric Vehicles (FCEVs) are here – more to come

Honda Clarity Fuel Cell Vehicle

Life-cycle GHG Emissions- Today's Cars

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 6

Low, Medium & High GHGs/Mile for 2015 Technology

Current gasoline ICEV: ~450

Joint VTO-FCTO Analysis Example

Source: Program Record 16004 (https://www.hydrogen.energy.gov/pdfs/16004 life-cycle ghg oil use cars.pdf)

DOE FCTO Activities: RDD&D

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 7

Research & Development

Fuel Cells

- >50% decrease in cost since 2006
- 5X less platinum
- 4X increase in durability

\$124/kW in 2006

\$53/kW in 2015* at high volume

*\$280/kW low volume

Demonstration

Forklifts, back-up power, airport cargo trucks, parcel delivery vans, marine APUs, buses, mobile lighting, refuse trucks

>220 FCEVs, >30 stations, >6M miles traveled

World's first tri-gen station

FCEV: Fuel Cell Electric Vehicle

Supporting Deployment H₂USA Public-Private Partnership to address H₂ Infrastructure Barriers

Advanced H₂ Storage Materials

DOE Cost Targets and Status

*Based on Electrolysis **Based on NG SMR

What can we learn from early gasoline infrastructure?

Many diverse options Cans, barrels, home models, mobile refuelers

Source: M. Melaina 2008.

Source: Vieyra, 1979

Source: Milkues, 1978

Examples of Gasoline Refueling Methods

ENERGY | Renewable Energy **Fuel Cell Technologies Office** | 11

Energy Efficiency &

U.S. DEPARTMENT OF

Source: Turn of the Century Refueling: A Review of Innovations in Early Gasoline Refueling Methods and Analogies for Hydrogen (Melaina 2007)

History shows phased introduction of different refueling methods

Global Landscape: Examples of Infrastructure Activities

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 12

Japan

Hydrogen Supply/Utilization Technology (HySUT)

- 2016 Status: ~80 stations & >570 FCEVs
- Goals: FCEVs 40K by 2020, 200K by 2025, 800K by 2030 Stations: 160 by 2020, 320 by 2025, 900 by 2030

Germany

H2Mobility

- 2016 Status: >40 stations & >100 FCEVs
- Goals: Stations- 100 by 2018-2019 and 400 by 2023

UKH2Mobility

- 2016 Status: 16 stations and 12 fuel cell electric buses (FCEBs)
- Goals: 65 H2 Stations by 2020

Scandinavian H2 Highway Partnership (SHHP)

- 2016 Status: ~20 stations, >70 FCEVs
- Denmark
- Norway Sweden
- 45 H₂ stations and a fleet of ~1K vehicles. Projects include H2Moves Scandinavia and Next Move

*Korea and France also have plans to accelerate hydrogen and FCEV market

Japan:

International partnerships established to accelerate hydrogen infrastructure

Examples of Roadmaps

Cost Volume Availability

Early Market Strategies Increase Volume

 U.S. DEPARTMENT OF
 Energy Efficiency &

 Renewable Energy
 Renewable Energy

 Fuel Cell Technologies Office | 14

Early Markets enable:

- Fuel cell cost reduction
- Robust supply base
- Emerging infrastructure
- Customer acceptance

Early Markets Applications Deployed in the U.S.

- >1,300 fuel cell systems deployed
- MHE (Material Handling Equipment) with >2M hrs. of operation
- Backup power for 1,000 unscheduled system disruptions

Fuel Cell Tow Trucks

Backup Power

Fuel Cell Bus Fleets

Hydrogen & Fuel Cells Budget

Key Activity	FY 15	FY 16	FY17
	(\$ in thousands)		
	Approp.	Approp.	Request
Fuel Cell R&D	33,000	35,000	35,000
Hydrogen Fuel R&D ¹	35,200	41,050	44,500
Manufacturing R&D	3,000	3,000	3,000
Systems Analysis	3,000	3,000	3,000
Technology Validation	11,000	7,000	7,000
Safety, Codes and Standards	7,000	7,000	10,000
Market Transformation	3,000	3,000	3,000
Technology Acceleration	0	0	13,000²
NREL Site-wide Facilities Support	1,800	1,900	N/A
Total	97,000	100,950	105,500

Emphasis in FY17 Request

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D

²Combines Manufacturing R&D, Technology Validation, Market Transformation.

FY17 Pending Appropriations (Senate mark: \$92M, House: \$97M)

Examples relevant to H2@Scale:

Senate:

 \$7M to demonstrate an integrated hydrogen renewable energy production, storage, and transportation fuel distribution and retailing system.

House:

 \$2M for the EERE share of the integrated energy systems work with the Office of Nuclear Energy and \$7M to enable integrated energy systems using high and low temperature electrolyzers with the intent of advancing the H2@Scale concept.

Pending final appropriations

- Provide an overview of H2USA activities in addressing H₂ infrastructure challenges and H2 supplier perspectives
- Introduce H2@Scale concept and potential for penetration of renewables
- Provide grid/utility and end user perspectives on H2@Scale
- Share stakeholder feedback on H2@Scale opportunities and remaining questions

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov