An Industrial Perspective on Fuel Cell Electrocatalysts

July 27th, 2016

BALLARD POWER SYSTEMS

PUTTING FUEL CELLS TO WORK

The Power of Fuel Cells, Simply Delivered

WWW.BALLARD.COM

Outline

- 1. Introduction: Ballard's current markets and primary focus in the electrocatalyst space
- 2. Current status of most promising ORR electrocatalysts
- 3. Importance of catalyst layer strategies in meeting performance/durability targets
 - Cathode example
 - Anode example
- 4. Importance of Industry/Academia collaboration
- 5. Future outlook/opportunities

Where is Ballard's Primary Expertise in Electrocatalysis?

MARKETS

Hydrogen FCgen®-H2PM Systems

A broad product portfolio gives Ballard a unique understanding of electrocatalyst requirements for many applications

Where is Ballard's Primary Expertise in Electrocatalysis?

Unnamed Global
Auto OEMs

A deep understanding of requirements for electrocatalysis for automotive applications has been acquired through many previous and on-going TS contracts with major OEMs.

Approach to Support Programs and Technology Solutions

 Ballard's largest effort in the electrocatalysis space is on integrating catalysts into high performance/durable CCLs.

Approach to Support Programs and Technology Solutions

Ballard's la

performan

High Volume Catalyst Coating Process

Real-world test protocols (Ballard Test Facility — up to 333 kW test stations)

Tradeoff analysis/ Modeling **Possible** and Testing concept (performance release /durability)

on integrating catalysts into high

Current Status – Advanced Catalyst Technology Development Timeline

- Scale-up (small scale MEA testing)

 Validation phase (short stack testing)

 Production phase/use in product
- Timeline is product dependent.
- Catalyst 'maturity' depends on targeted application (e.g. NPMC may be nearly ready for backup power, but still far from meeting automotive targets).

Current Status – Tradeoffs Among Leading ORR Electrocatalysts

Catalyst Type	Benefit	Remaining Challenges
Pt	1) Mature technology	Unable to meet long term automotive Pt loading and catalyst layer durability targets
Pt alloy/de-alloy	 Mature technology Improved performance over Pt/C Enhanced membrane/MEA durability 	Difficult to meet long term automotive Pt loading target
Core-shell Pt core	 Improved mass activity over Pt alloy Improved durability over Pt/C Very high ECSA 	 Difficult to maintain quality of 'shell' Dissolution of 'core' still a concern
Shape controlled nanocrystal	 Significantly higher mass activity (~ 15 x) over Pt Chemical synthesis (vs. electrochemical) may allow for easier scale up vs. core-shell 	 Scale up is at an early stage Conflicting data on stability MEA performance has not been demonstrated yet
Nanoframe/nanocage	 Significantly higher mass activity (~ 15 x) over Pt Highly stable (improved durability over Pt/C) 	 Scale up is at an early stage Ionomer penetration into nanocage will likely be difficult MEA performance at high current density may be challenging

Current Status – Tradeoffs Among Leading ORR Electrocatalysts

Catalyst Type	Benefit	Remaining Challenges
Non-precious metal catalyst	Potentially offer the largest benefit (significant cost reduction)	 Still far from meeting performance, durability, and stability requirements for automotive applications. Stability still a concern for even the least demanding applications.

PGM Catalysts – What Challenges Remain?

	PGM Mass Activity (A/mg)	Durability
Huang et al., Science, 348 (2015) 1230-1234	6.98	5.5 % loss*
Chen et al., Science, 343 (2014) 1339-1343	5.7	0 %*
Choi et al, ACS Nano, 8 (2014) 10363-10371.	1.6	1.7%*

^{*} See references for details on voltage cycling

Largest remaining challenges

- At the RDE level, mass activity and durability targets have already been greatly exceeded.
- Additionally, these catalysts would appear to have sufficient ECSA (all > 60 m²/g) to avoid the 'oxygen transport' problems observed at low PGM loadings.

Scale-up, and incorporation into high performance/durable CCLs must now be top priority.

Non PGM Catalysts – What Challenges Remain?

- Due to great advances in activity, the performance of NPMCs has reached a stage at which they can be considered for some (non-automotive) applications.
- Additionally, these catalysts have shown impressive durability during voltage cycling.
 - D. Banham, et al., J. Power Sources, 285 (2015) 334-348.

Stability – Performance loss during galvanostatic/potentiostatic experiments

Durability – Performance loss during voltage cycling experiments

The **stability** of NPMCs is presently too low for any commercial PEMFC applications.

Strategies to Achieving Performance and Durability Targets at the MEA Level

Question: Is it possible to achieve performance and durability targets with a 'catalyst only' approach?

Answer: Despite remarkable advances in electrocatalysts, remaining technical targets will only be achieved by:

- 1) Optimization of stack/system with consideration to interdependency between materials and operating conditions/modes.
- 2) Advanced catalyst layer design strategies to close remaining gaps at the materials level.

Interdependency of Materials/Operating Modes

We typically think about how PEMFC conditions will impact materials.

Interdependency of Materials/Operating Modes

Catalyst type/loading impacts drive cycle UPL

Anode catalyst type/loading impacts UPL during SU/SD

Catalyst/support hydrophilicity impacts local RH

Conditions/Operating Modes

UPL during drive cycle

UPL during
air/air
startup/
shutdown

Relative Humidity

- We typically think about how PEMFC conditions will impact materials.
- However, we must also consider how materials can impact PEMFC conditions/operating modes.

Importance of Catalyst Layer Strategies: Low PGM Loadings

At low PGM loadings, a large gap exists (moderate to high current densities)

- Recent catalysts have shown up to 30x higher mass activity vs. Pt/C.
- Is this enough to overcome the performance gap at high current densities?

Answer: A 'Catalyst only' approach is unlikely to be successful

- (35x higher mass activity would be required even at **moderate** current densities).
- GM demonstrated that core-shell catalysts (large ECSA) can overcome this problem, but these catalysts suffer from some degree of base-metal dissolution.

Real-world Requirements for PEMFC Electrocatalysts: Cathode

- PGM-alloy catalysts typically show improved performance (kinetic benefit) vs. Pt/C at BOL, but often show higher ohmic/mass transport losses.
- During voltage cycling, a Pt/C will lose performance due to traditional degradation mechanism (i.e. dissolution, agglomeration, Ostwald ripening).
- However, ionomer contamination due to PGM-alloy dissolution (M+) results in significant additional performance loss at high current densities.

Can this challenge be overcome at the CCL level?

Catalyst Layer Design Strategies for Overcoming Performance/Durability Gaps: Cathode

- Due to their high mass activities, Pt-alloy catalysts typically show high performance at low current densities.
- However, these catalysts suffer from performance at high current densities due to even trace base-metal dissolution.
- This loss is even more significant following voltage cycling which promotes dissolution.

Fortunately, appropriate CCL designs can help close remaining gaps in performance/durability.

Real-World Requirements for PEMFC Electrocatalysts: Anode

- During normal operation in a stack, hydrogen passes through the flow fields and is oxidized at the anode.
- If a flow field becomes blocked, current is still forced through the malfunctioning cell by the rest of the stack.
- Materials within the anode (carbon, catalyst, water) are then oxidized to supply the necessary electrons.
- This leads the anode potential to reach high anodic values (> 1.5 V), and can rapidly degrade the anode catalyst layer.

Catalyst Layer Design Strategies for Overcoming Performance/Durability Gaps: Anode

- 45cm² MEA
- 75°C,
- 100%RH,
- 5psig,
- 0.2A/cm² reversal current

- Design 1 to design 2 represents a change in both catalyst type and catalyst layer design.
- Design 2 and design 2A have the same catalyst, but with a modified catalyst layer design.

Ballard has developed advanced anode catalyst layer designs capable of withstanding extreme cell reversal events.

How Can Industry Help Guide/Accelerate Catalyst Development in Academia?

- Long term goals
- Government funding/significant R&D resources
- Specialists/narrow focus

Commercialize Technology!

- Scale up capabilities
- Knowledge of real-world requirements
- Broad knowledge/focus

Academia/Industry typically have different skill sets which makes for a great partnership in trying to commercialize technology!

Selected Examples from Ballard's Collaborations

Project	Partner/Role		Outcome
	BALLARD°	SUNY POLYTECHNIC INSTITUTE	
HOR Selective Catalyst	Identified HOR selectivityProposed mechanism	Synthesized catalystOptimized particle size	 Nano Energy, 27 (2016) 157-166.

Selected Examples from Ballard's Collaborations

BALLARD®

Project	Partner/Role		Outcome
	BALLARD°	SUNY POLYTECHNIC INSTITUTE	
HOR Selective Catalyst	Identified HOR selectivityProposed mechanism	Synthesized catalystOptimized particle size	 Nano Energy, 27 (2016) 157-166.
	BALLARD°	Western UNIVERSITY CANADA	
ZrO stabilized Pt	 Identified possible benefits for PEMFCs Proposed electrochemical testing protocols 	 Developed the ALD method Prepared all materials 	 Adv Mater, 27 (2015) 277-281.

Future Outlook

BALLARD®

 A strong pipeline of next-gen electrocatalysts should allow for wide-spread adoption of PEMFCs for automotive applications.

 Non-automotive applications offer an excellent steppingstone for some of these nextgen catalysts on their way to automotive applications

Remaining Challenges/Opportunities for PGM and non-PGM Catalysts

 For PGM catalysts, the mass activity targets have mostly been met, and focus should now shift to integration into advanced CCLs.

 Non-PGM require further improvements (particularly in stability) before automotive targets can be met.

Good progress, but even the least demanding applications would still require > 1000 h stability!

Thank You!

Questions?