

CSP Program Summit 2016

Thermochemical Storage with Anhydrous Ammonia

CSP-ELEMENTS Award # DE-EE0006536 July 1, 2014 – September 30, 2016 Project Budget: \$1,478,588

PI: Adrienne Lavine, Professor UCLA

Other Contributors: Keith Lovegrove (IT Power Australia), Hamarz Aryafar, Abdon Sepulveda, Dante Simonetti, Richard Wirz, Pirouz Kavehpour

Value Proposition and Problem Statement

- Ammonia-based thermochemical energy storage is a welldeveloped technology that has the potential to meet the CSP:ELEMENTS performance and cost goals.
 - Target performance: Heat steam to 650°C for supercritical steam power block.
 - Plant context: 220 MW_t plant with 6 hours of storage.
 - Target cost: \$15/kWh_t.
- At start of project, two key challenges identified:
 - Ammonia synthesis had never been used to heat steam to 650°C. Is it possible?
 - Can physical storage of high pressure nitrogen/hydrogen mixture be done cost-effectively?

System Overview

 $NH_3 + 66.6 \text{ kJ/mol} \rightleftharpoons \frac{1}{2} N_2 + \frac{3}{2} H_2$

Objectives

Phase 1 Main Objectives:

- Demonstrate heating supercritical steam to 650°C.
- Perform techno-economic evaluation to show cost-effective gas storage.
- Perform initial design of endothermic reactor/receiver to demonstrate feasibility. (Won't be discussed in this talk.)
- Phase 2 Main Objective: Predict performance and cost of utility-scale synthesis system for ammonia-based thermochemical energy storage.

Selected Milestones and Results

- Gas storage
- Steam heating
 - Experimental
 - Modeling
- Optimizing the synthesis reactor system for low cost

Gas Storage

Gas Storage Milestone

- Need to store ambient temperature, high pressure N_2+3H_2 .
- 220 MW_t plant, 6 hrs storage, needs ~24,000 m³ at 20 MPa.
 - Comparable to two-tank molten salt.
- Underground storage concept:
 - Surrounding geology provides bulk of pressure containment.
 - Underground gas storage already widely used.
- Approaches considered:
 - depleted oil or gas wells
 - aquifers
 - salt caverns
 - rock caverns
 - tunnel drilling
 - shaft drilling

Salt Caverns

- Solution mining of salt caverns is simple, established process:
 - Fresh water pumped into salt dome or bed. Brine extracted.
- Salt caverns widely used for storage:
 - Over 2000 salt caverns in North America alone for hydrocarbon storage.
 - Pure hydrogen or hydrogen-rich gas mixtures have been stored.
- Salt cavern conditions are suitable for our application:
 - Volumes up to 500,000 m³
 - Pressures up to ~50 MPa
 - Rock salt chemically inert to hydrogen
 - Permeability low enough to contain hydrogen gas

Roughly \$1/kWh_t to create storage space (for large projects).

Salt Caverns, cont.

- Suitable salt deposits are present on every continent, good coincidence with high DNI areas.
- Despite this, siting CSP plants for suitable salt deposits is a significant constraint.

Large Diameter Drilled Shafts

- Removes site choice constraint.
- Shaft drilling routinely carried out at up to 7.5 m diameter and depths of 1000 m.
- In consultation with drilling company:
 - Cost roughly \$5/kWh_t.
- Conceptual design developed.
- Details of hydrogen impermeable lining and endcaps required.

Steam Heating

UCLA

Steam Heating Milestone, Modeling

$$\dot{m}_g = 0.3 \text{ g/s}$$
 $\dot{m}_s = 0.33 \text{ g/s}$
 $D_o = 2 \text{ cm}$
 $D_i = 0.5 \text{ cm}$

$$P_g = 30 \text{ MPa}$$

 $P_s = 26 \text{ MPa}$

Model shows supercritical steam can be heated from 350 to 650°C.

Steam Heating Milestone, Experimental

Dissociation reactor

Experiments show steam

Work ongoing toward heating steam at 5 kW_t scale.

at ~100 W scale.

heated from 305°C to 650°C

Cost Optimization

Optimized Cost Milestone

- Consider entire synthesis system:
 - Synthesis reactor
 - Recuperating heat exchanger
 - Additional preconditioning subsystems
- Modular system with different reactor designs for different temperature regions.
- Multi-parameter optimization problem with tens of parameters.
- Largest cost is wall material, including high nickel alloy in high temperature regions.
- Minimize wall material volume per unit power.

Optimizing Inner and Outer Diameters

- Optimization is driving to smaller scale.
- Not a surprising result.
- How low can we go?
 - Pressure drop will increase and pumping power.
 - Manufacturing costs must be considered.

Path-to-Market

Path to Market

1. Identification of partners – current to next 12 months

 Continuation of experiments, modeling, and design to support solar-driven closed-loop experiment.

2. Solar-driven closed-loop experiment – 2016-2019

- On sun, using existing tower-based test facility or single dish.
- Steam production but no power generation.
- Budget around \$4 million.

3. Pilot 1 MW_e system – 2018-2021, followed by continuous operation

- Gas storage fabricated above ground using pressure pipe.
- Heat recovery synthesis reactor designed for 650°C supercritical steam, but throttled to lower pressure for small off-the-shelf subcritical steam turbine.
- Generate revenue sufficient to cover operating costs, operate for extended years as needed.
- Budget around \$15 million.

Path to Market

- 4. First utility scale demonstration, 10 MW_e 2019-2024, followed by continuous operation
 - First trial of underground storage using shaft drilling technology.
 - Still using small off-the-shelf subcritical steam turbine.
 - Significant financial assistance package required to build the first system, but operation and balance of financial package on fully commercial basis.
 - Budget around \$100 million.
- 5. First full-sized system, 100 MW $_{\rm e}$, 10+ hrs storage 2022-2027, followed by continuous operation
 - Underground storage either salt cavern or shaft drilled.
 - Synthesis reactor produces supercritical steam at 650°C, potentially for a supercritical steam turbine.
 - Preferential finance terms probably required, otherwise a fully commercial system.
 - Budget around \$700 million.

Conclusions

- Gas storage in salt caverns or drilled shafts appears feasible within the \$15/kWh₊ budget.
- Ammonia synthesis can be used to heat supercritical steam to 650°C, according to experiments and modeling.
- Cost minimization of the synthesis reactor system is underway:
 - Small diameter tubes are desirable.
 - Multi-parameter optimization of modular design has potential to significantly decrease cost.
- A proposed path-to-market could achieve a full-scale system by 2027.

Acknowledgments

The information, data, and work presented herein was funded by the Office of Energy Efficiency and Renewable Energy, U.S. Dept. of Energy, Award No. DE-EE0006536. The authors gratefully acknowledge the support.

QUESTIONS?