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Project Objective

Distillation: Essential to Meet Human Needs
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Multicomponent distillation: ubiquitous in all

—-"ﬁ«-qnﬂ chemical and biochemical plants

Distillation accounts for ~¥3% of the world’s
energy consumption

US refineries: ~0.4 million bbl of oil per day for
crude oil distillation alone



Project Objective

However, Many Multicomponent Configurations Exist
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Current Industrial Practice:

e Unable to generate numerous configurations
e Use of heuristics, experience, guess, trial and error
e Often results in energy-inefficient plants



Project Objective
Find the Most Cost Effective Multicomponent Configuration
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Our Goal: Provide an easy to use stepwise method to:
e create the entire search space of distillation configurations,
e perform process intensification,

¢ |dentify the lowest cost (optimal) configuration among them.



Technical Innovation

First Step: Generate All Possible Configurations

e Systematic and easy-to-use method to generate complete set of
basic distillation configurations?
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Technical Innovation

e Systematic and easy-to-use method to generate complete set of
basic distillation configurations?
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Next Step: How to identify low cost configurations?



Technical Innovation

Global Minimization Algorithm (GMA)
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Strategies: Additional (distillation) constraints, variable bounds,
initial guesses -> the elusive global optimum attained!!



Technical Innovation

Considerable Progress Under Previous AMO Support
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® Under previous AMO support:
®Developed a model to minimize heat duty

*~6000 out of 6128 configurations for 5-component separations
solved in 16+ hours of CPU time

e However, a few (~100) un-converged configurations remained



Technical Innovation

Now remaining challenges have been solved
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¢ Under current AMO support:
e Models for both heat duty and total cost completed
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e All 6128 configurations solved for energy in 3.5 hours of CPU

time!

oFirst group to identify the global optimum and to rank-list
distillation configurations




Technical Innovation

Petroleum Crude Distillation

Typical fractions obtained by crude distillation:

Naphtha (A), Kerosene (B), Diesel (C), Gas Oil (D) and Residue
(E)

Hence, consider crude as 5-component mixture ABCDE



Technical Innovation

Petroleum Crude Distillation

Light Crude
Component Relative Mole %
Volatility
A 45.3 46.1
B 14.4 19.5
C 4.7 7.3
D 2.0 11.4
E 1.0 15.7




Technical Innovation

Conventional
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ABGDE @D
=X
E

Light Petroleum Crude Distillation




Technical Innovation

Light Petroleum Crude Distillation (Results from GMA)
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Light Petroleum Crude Distillation (Results from GMA)
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Technical Innovation

Light Petroleum Crude Distillation (Results from GMA)

Conventional Least Energy EChaIIenge: Keep same
Configuration Consuming i energy consumption,
Configuration i but reduce sections?
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Technical Innovation

Light Petroleum Crude Distillation (Results from GMA)
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Technical Innovation

Light Petroleum Crude Distillation (Results from GMA)

Conventional Least Energy EChaIIenge: Keep same
Configuration Consuming i energy consumption,
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Technical Innovation
Light Petroleum Crude Distillation (Results from GMA)

Conventional Least Energy EChaIIenge: Keep same Process
Configuration Consuming  energy consumption,  Intensification:
Configuration  but reduce sections? New Dividing Wall
’ Columns (DWCs)
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Technical Innovation

What is a Dividing Wall Column (DWC)?

A Three-component
Configuration
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Technical Innovation
What is a Dividing Wall Column (DWC)?

A Three-component Dividing Wall Column
Configuration (DWC)
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Technical Innovation
What is a Dividing Wall Column (DWC)?

A Three-component Dividing Wall Column
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Technical Innovation
What is a Dividing Wall Column (DWC)?

A Three-component Dividing Wall Column
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Technical Innovation

We Have Introduced A Method to Draw Operable DWC
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Technical Innovation

Introduced Additional Process Intensification to
Further Reduce Distillation Columns



Technical Innovation

Further Process Intensification
{at,p Oper Ocps O} = {1.1, 1.1, 2.5, 2.5};

A Case Study ->
Y i, ., £, £, .} ={0.3,0.05, 0.05, 0.3, 0.3}
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Technical Innovation

Further Process Intensification
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Technical Innovation

Further Process Intensification
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Technical Approach

Enumeration of Optimization Model for| Complete Rank-list
Configurations Each Configuration of Configurations
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Thanks to AMO, we are the only USA group performing this research




Technical Approach

Enumeration of
Configurations

1000s of configurations

Which is the BEST
configuration?

Optimization Model for
Each Configuration

min Z Ve

afdm

V>Z

mmsm - Z Vool

c=Ln-1

100s of equations

c=Ln-1
subject to Rank 1= _
ff,AB JFfCD _fABCD s e

Lirc+Vie =Fize | Rank 2

Complete Rank-list
of Configurations

Save up t0 40% in
cost and energy

8

4

Thanks to AMO, we are the only USA group performing this research
Outcome is a quick, rank-listing optimization software tool for
Industrial practitioners that is easy to use



Transition and Deployment

® Results are of interest to practitioners in broad industries
eChemicals, e.g. purification of alcohols, ketones, etc.

®Petrochemicals, e.g. NGL (associated with shale gas
production), LNG, Crude Petroleum

eBiochemicals, e.g. pyrolysis, fermentation, gasification
® Process designers in above industries are prime users

eNew plants

eRetrofits



Transition and Deployment

Leveraging commercialization experience of Purdue Office of
Technology Commercialization and Purdue Enterprise Company to
commercialize our software (e.g., in active dialogue with Dr.
Joseph Pekny, Co-founder and Chief Scientist of Advanced Process
Combinatorics, Inc.)

An independent company (Purdue Enterprise Company) to make
sales-call

Hiring a professional developer (Dr. George Applequist) to convert
academic software to commercial software

Made presentation to a number of companies on the capabilities
of our software — ExxonMobil, SABIC, Eastman Chemical Company
and The Dow Chemical Company, all have shown keen interest

Will continue to incorporate new methods and tools in the
software - continued improvement!



Measure of Success

e New plants with energy-efficient configurations that have
never been built before

® Retrofit of new energy-efficient options
e Ultimate impact

®30% to 50% reduction in 3% of the total world energy
consumption

®Also 30%-50% cost reduction

eSignificant environmental impact in terms of reduction in
CO, emissions

e Modular design feasible

® Process intensification through heat and mass integration of
distillation columns, and the use of new dividing wall columns



Project Management & Budget

® Duration of the project: Three years (2016 Schedule)

Milest Planned
one Milestone Description Verification Method Completio
n Date
221 DW(Cs for any TC configuration Finish development of the method and write a manuscript. Q6
3.2 Newly identified heat & mass integrated columns for A method to draw sub column configurations will be made Qs
' improved energy efficiency available.
oL Computer software with NLP formulation using exergy made
5.1.1 Exergy optimization software . Q7
available
Complete development of the method and comparison on an
6.1.1 Algorithm to identify the TC links with no heat savings P . p . . P Q7
application with global minimum heat duty
6.3.1 Development of a method to retain first law benefit from a Complete development of the method and its implementation in a8
o TC link while eliminating the second law penalty the computer software
7.1.1 Completion of the second internship Finish second internship and submit a feedback report Q7
Incorporate feedback from second internship in the .
7.1.2 Incorporate feedback in the computer software Q8
software
791 Identify primary firm and engage discussion on modes of Identification of a firm and start of the development of the Q6
- commercialization commercialization terms/needs
7.2.2 Conclude business model A business model for distribution of software Q7
7.2.3 Licensing agreement with Purdue Executed License from Purdue Q8

Total Project Budget

DOE Investment 900,000
Cost Share 251,708
Project Total 1,151,708




Results and Accomplishments

e Our quick-screening optimization tool can lead to new industrial
plants and retrofits that are 30-50% more energy-efficient and
cost-effective than existing processes

e Completion of internship at Eastman Chemical Company and
incorporation of feedback into our optimization tool

e Active efforts to commercialize software

e Ability to draw dividing wall column of any given low-energy
configuration, and hence, for the first time, availability of
multitude of dividing wall candidates for feed mixtures containing
4 components or more, which can save ~¥30% operating and
capital costs

® Improved energy efficiency and significant equipment (columns,
reboilers, condensers & transfer-streams) reduction through
process intensification of distillation configurations
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