## Excel Fire Modeling and CFAST Integration

2015 DOE Fire Safety Workshop May 5-7, Alexis Park Hotel



Solving Our Partners Staffing Challenges



#### Agenda

- Introduction
- •Why Excel?
- Capabilities
- How It Works
- Limitations
- Looking Forward





Rob Plonski Undergrad in Mechanical Engineering Masters in Fire Protection Engineering

PE in NM



(2009-2015) Fire Protection Engineer

(Current)

Fire Protection Engineer







## Excel Fire Modeling (Why?)

#### Why do I want to use Excel?

- Fast
- Simple (equations/correlations)
- Reliable
- Easy to use
- Easy to explain
- Easy to distribute



NUREG 1805: Quantitative Fire Hazard Analysis Methods for the U.S. **Nuclear Regulatory Commission Fire Protection Inspection** Program

- 22 separate tools (Fire Dynamics Tools)
  - Predicting HGL, Flame Height, Burning Duration, etc. ٠

Ways to Model Fire Hand Calculations Zone Models Field Models



#### Excel Fire Modeling (The Model)

| HVAC (Rm changes/Hr)                                         | 0.00                | _                    | Distance to Sprinkler Head (m) | 2.5                                                           | 2500 -        |                                                         |                | · .            | -              |                 |                |                    |                |
|--------------------------------------------------------------|---------------------|----------------------|--------------------------------|---------------------------------------------------------------|---------------|---------------------------------------------------------|----------------|----------------|----------------|-----------------|----------------|--------------------|----------------|
| Wind Speed                                                   | 0.00                |                      | Sprinkler Head RTI (SI Units)  | 80                                                            | 2500          |                                                         |                |                |                |                 |                | Room Number        | 1025           |
| Time Door Open (s)                                           | 300.00              |                      | Sprinkler Activation Temp (*C) | 74                                                            | 2000 -        |                                                         |                |                |                |                 |                | Room Temp (*C)     | 20             |
| CFAST Instalation Location.<br>Default is "C:\NIST\cfast511" |                     |                      | Sprinkler Activation Time (s)  | 150                                                           | ∭ 1500 -<br>¥ |                                                         |                |                |                | Room Dimensions |                |                    |                |
| C:INISTIcfast511                                             |                     |                      |                                |                                                               | ¥ 1000 -      |                                                         | //             | $\sim$         |                |                 |                | Length (m)         | 4.00           |
| Object                                                       | Credible<br>Sources | Adjustment<br>Factor |                                |                                                               | 500           |                                                         |                |                | $\geq$         |                 |                | Width (m)          | 4.00           |
| Desk<br>Computer<br>Chair                                    | 1                   | 1                    | Reload Database                |                                                               |               |                                                         |                |                |                |                 |                | Height (m)         | 3.00           |
|                                                              | 1                   | 1                    |                                |                                                               | o –⁄          |                                                         | , ,            | , ,            |                |                 | ·              | Area (m2)          | 80             |
| Trashbag                                                     | 1                   | 1                    |                                |                                                               | 0             | 100 2                                                   | 00 300 4       | 400 500        | 600 700        | 800 900         | 0 1000         | Doorway Dimensions |                |
|                                                              |                     |                      |                                |                                                               |               |                                                         |                | Time (s)       |                |                 |                | Width (m)          | 0.91           |
|                                                              |                     |                      | Computo                        |                                                               |               | Babrauskas's Method MacCaffrey, Quintiere, & Harkerload |                |                |                |                 |                | Height (m)         | 2.13           |
|                                                              |                     |                      | Compute                        | Thomas' Method Plonski HRR Curve for Room 1025 150% HRR Curve |               |                                                         |                |                |                |                 | Area (m2)      | 1.94               |                |
|                                                              |                     |                      |                                |                                                               |               |                                                         |                |                |                |                 |                |                    |                |
|                                                              |                     |                      |                                |                                                               |               |                                                         |                |                |                |                 |                |                    |                |
|                                                              |                     |                      |                                |                                                               | -             | Sprinkler Ac                                            | tivation Time  |                |                |                 |                |                    |                |
|                                                              |                     |                      |                                |                                                               |               |                                                         |                |                |                |                 |                |                    |                |
|                                                              |                     |                      | Time (s)                       | 0                                                             | 25            | 50                                                      | 75             | 100            | 125            | 150             | 175            | 200                | 225            |
|                                                              |                     |                      | Total HRR (kW)                 | 0.0                                                           | 154.4         | 308.9                                                   | 445.3          | 564.0          | 614.3          | 608.8           | 603.3          | 571.9              | 624.8          |
|                                                              |                     |                      |                                |                                                               |               | 10.5                                                    |                |                |                |                 |                | 50.0               |                |
|                                                              |                     |                      | Desk 1                         | 0.0                                                           | 6.3           |                                                         | 18.8           | 25.0           | 31.3           | 37.5            | 43.8           |                    | 137.5          |
|                                                              |                     |                      | Computer 1                     | 0.0                                                           | 4.4           | 8.9                                                     | 13.3           | 17.8           | 22.2           | 26.6            | 31.1           | 35.5               | 43.1           |
|                                                              |                     |                      | Chair 1<br>Trashbag 1          | 0.0                                                           | 56.3<br>87.5  |                                                         | 168.8<br>244.5 | 225.0<br>296.3 | 212.8<br>348.0 | 200.7<br>344.0  | 188.5<br>340.0 |                    | 164.2<br>280.0 |
| J                                                            |                     |                      | mashbag i                      | 0.0                                                           | 87.5          | 1/5.0                                                   | 244.5          | 236.3          | 346.0          | 344.0           | 340.0          | 310.0              | 260.0          |



## Excel Fire Modeling (Composition)

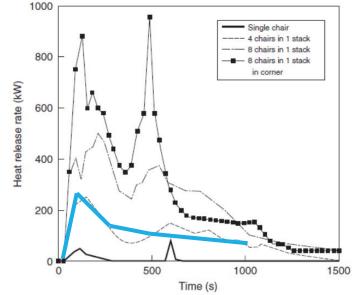
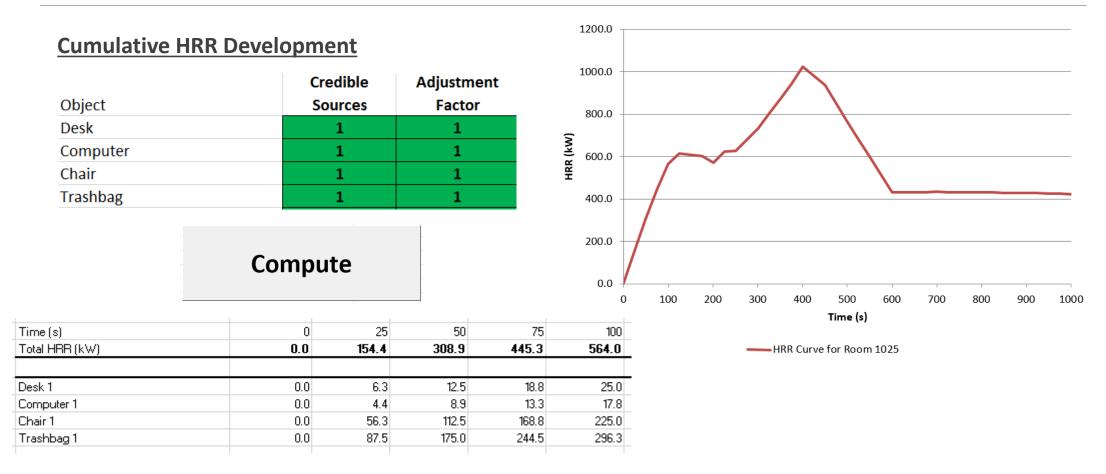
#### **Modular Construction**

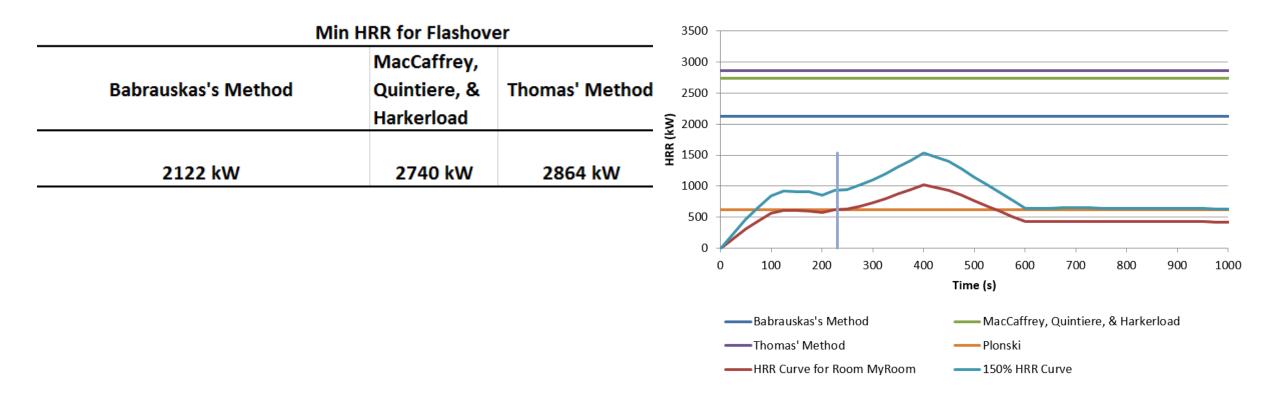
- HRR Database
- Cumulative HRR Development
- Flashover Correlations
- Sprinkler/Heat Detector Activation Time
- Simulation History
- Development of CFAST Input File



#### **HRR Database**

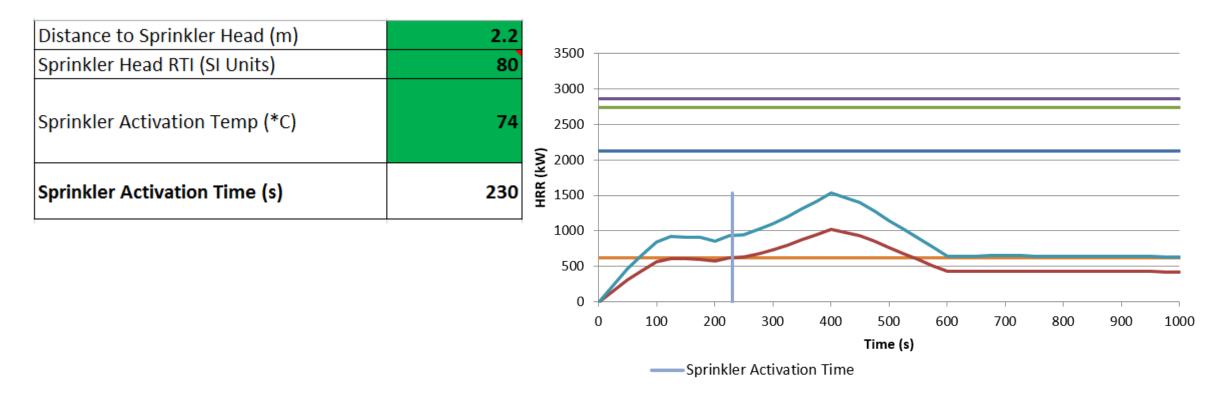
| ** '     | Times MUST be inpu | ut evenly di | visible by 2 | 5 and hrr s | hould eithe | r terminate | e or have a | 1000s time | step |      |
|----------|--------------------|--------------|--------------|-------------|-------------|-------------|-------------|------------|------|------|
| Name     | T1                 | HRR1         | Т2           | HRR2        | ТЗ          | HRR3        | Т4          | HRR4       | Т5   | HRR5 |
| Desk     | 200                | 50           | 300          | 400         | 400         | 650         | 600         | 150        | 1000 | 300  |
| Computer | 200                | 35.53333     | 300          | 65.8        | 450         | 225.7       | 500         | 195.6667   | 600  | 131  |
| Chair    | 100                | 225          | 250          | 152         | 500         | 100         | 1000        | 80         |      |      |
| Trashbag | 50                 | 175          | 75           | 244.5       | 125         | 348         | 175         | 340        | 225  | 280  |



Figure 3-1.16. Metal-frame, upholstered stacking chairs.

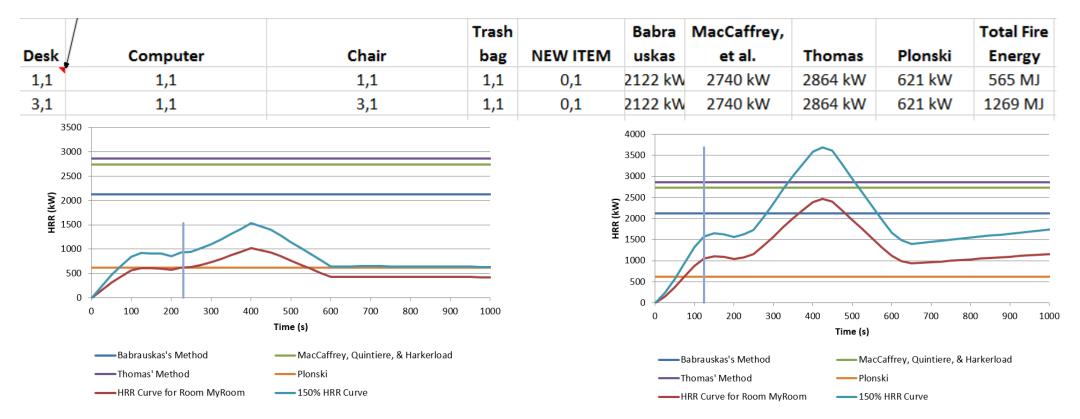







#### **Flashover Correlations**






#### Sprinkler/Heat Detector Activation Time



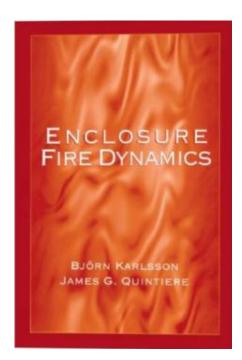


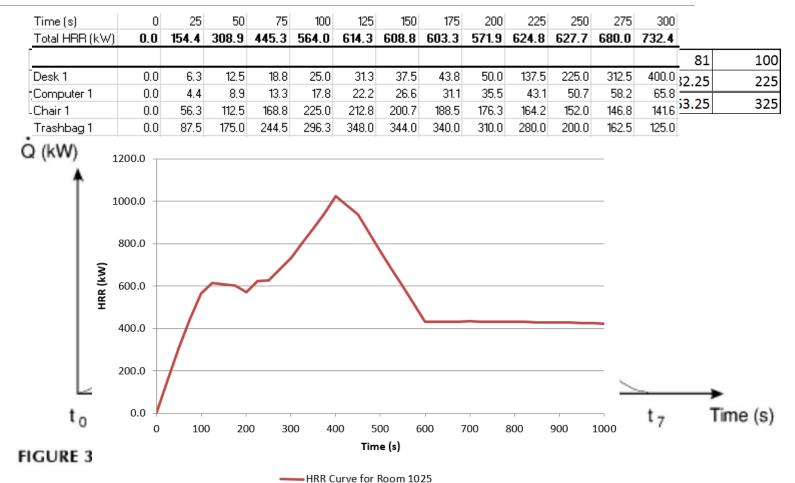
#### **Simulation History**





## Excel Fire Modeling (Applications)


#### **Development of CFAST Input File**


| VERSN 5 ROOM MyRoom 100% HRR - HVAC Off                         |                                                                                                                 |               |             |            |           |           |           |            |             |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|-------------|------------|-----------|-----------|-----------|------------|-------------|
| TIMES 1000 30 30 30 30                                          |                                                                                                                 |               |             |            |           |           |           |            |             |
|                                                                 | _                                                                                                               | -             |             |            |           |           |           |            |             |
| ADUMPF C:\Test\100RmMyRoom.csv WINFS                            |                                                                                                                 |               |             |            |           |           |           |            |             |
| DUMPR C:\Test\100RmMyRoom.hi                                    |                                                                                                                 |               |             |            |           |           |           |            |             |
| TAMB 293.150 101300 0                                           |                                                                                                                 |               |             |            |           |           |           |            |             |
| EAMB 293.150 101300 0                                           |                                                                                                                 |               |             |            |           |           |           |            |             |
| #No Wind                                                        |                                                                                                                 |               |             |            |           |           |           |            |             |
| HI/F 0.00000                                                    |                                                                                                                 |               |             |            |           |           |           |            |             |
| WIDTH 4                                                         | Gen                                                                                                             | erate 1       | 00%H        | RR C       | ΔST Ι     | nnut fi   |           |            |             |
| DEPTH 12.38                                                     | Gen                                                                                                             |               | 00/011      |            | AJII      | iput ii   |           |            |             |
| HEIGH 4                                                         |                                                                                                                 |               |             |            |           |           |           |            |             |
| CXABS 0.00                                                      |                                                                                                                 |               |             |            |           |           |           |            |             |
| CYABS 0.00                                                      |                                                                                                                 |               |             |            |           |           |           |            |             |
| CEILI GYP3/4                                                    |                                                                                                                 |               |             |            |           |           |           |            |             |
| WALLS GYP3/4                                                    |                                                                                                                 |               |             |            |           |           |           |            |             |
| FLOOR CONCRETE                                                  |                                                                                                                 |               |             |            |           |           |           |            |             |
| HVENT 1 2 1 0.91 2.13 0 0 2 0                                   |                                                                                                                 |               |             |            |           |           |           |            |             |
| CVENT 1 2 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1               | < 1st ro                                                                                                        | om #, 2nd r   | oom#, ven   | t#, open f | fraction  |           |           |            |             |
| #NO HVAC                                                        | < Presc                                                                                                         | ribing duct   | nside of ro | oom        |           |           |           |            |             |
| #NO HVAC                                                        | < Presc                                                                                                         | ribing duct   | outside of  | room       |           |           |           |            |             |
| #NO HVAC                                                        | < Settir                                                                                                        | ng HVAC Flo   | w from ins  | ide to out | tside     |           |           |            |             |
| CHEMI 100.0000 10.0000 10.0000 2.700E+007 393.150 665.150 0.300 | 00(< Plast                                                                                                      | ic is the ass | umed fuel   |            |           |           |           |            |             |
| LFBO 1                                                          | < Fire c                                                                                                        | bject in roo  | m one       |            |           |           |           |            |             |
| LFBT 2                                                          |                                                                                                                 |               |             |            |           |           |           |            |             |
| TARG 1 FRONT 0.84 0.84 IMPLICIT PDE                             |                                                                                                                 |               |             |            |           |           |           |            |             |
| DETECT 2 1 347 2.2 0 4 80 1 0                                   | <heat< td=""><td>detector/Spr</td><td>inkler</td><td></td><td></td><td></td><td></td><td></td><td></td></heat<> | detector/Spr  | inkler      |            |           |           |           |            |             |
| CJET ALL                                                        |                                                                                                                 |               |             |            |           |           |           |            |             |
| CFCON 1 2                                                       |                                                                                                                 |               |             |            |           |           |           |            |             |
| HHEAT                                                           |                                                                                                                 |               |             |            |           |           |           |            |             |
| FTIME 50 100 150 200 250 300 350 400 450 500 550 600 650 70     | 0 750 800                                                                                                       | 850 900 9     | 50 1000     |            |           |           |           |            |             |
| FQDOT 0 308883.33325 564016.6665 608816.666416667 571866.666    | 333333 627                                                                                                      | 666.6665 7    | 32400 87    | 3633.333   | 333333 10 | 24800 935 | 900 76366 | 56.7 59753 | 3.35 431400 |
| THRMF C:\NIST\cfast511\thermal.df                               |                                                                                                                 |               |             |            |           |           |           |            |             |
|                                                                 |                                                                                                                 |               |             |            |           |           |           |            |             |



**Cumulative HRR Development** 

 Model identified in Enclosure Fire Dynamics by Karlsson & Quintere







# Elashover CorrelationsPlus Assumptions<br/>Babrauskas<br/> $\dot{Q} = 750A_0\sqrt{H_0}$ $\dot{Q} = 750A_0\sqrt{H_0}$ $\dot{Q} = 7.8A_T + 378A_0\sqrt{H_0}$ McCaffrey, Quintiere, and Harkleroad<br/> $\dot{Q} = 610(h_kA_TA_0\sqrt{H_0})^{1/2}$

where

- $h_k$  = effective heat transfer coefficient [(kW/m)/K]
- $A_T$  = total area of the compartment surfaces (m<sup>2</sup>)
- $A_0$  = area of opening (m<sup>2</sup>)

 $H_0$  = height of opening (m)



where r/H > 0.18, and

where  $r/H \leq 0.18$ , and

Sprinkler/Heat Detector Activation Time

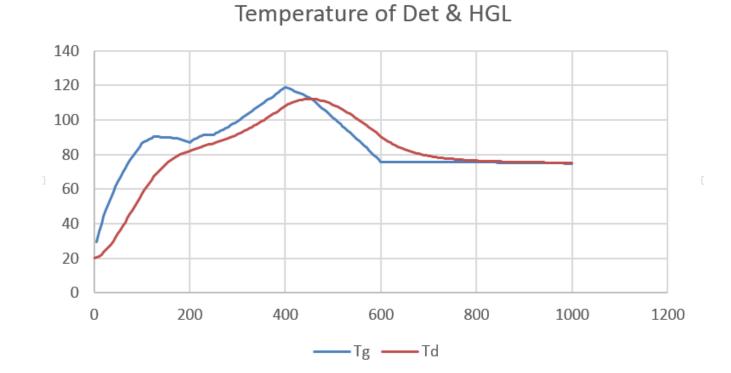
#### $T_g - T_a = \frac{[5.38(\dot{Q}/r)^{2/3}]}{H} \,^{\circ}\mathrm{C}$

 $T_g - T_a = \frac{(16.9 Q^{2/3})}{H^{5/3}} \,^{\circ}\mathrm{C}$ 

$$u = \frac{(0.20\dot{Q}^{1/3}H^{1/2})}{r^{5/6}} \,\mathrm{m/s} :$$

where r/H > 0.15, and

Method of Alpert


$$u = 0.95 \left(\frac{\dot{Q}}{H}\right)^{1/3} \mathrm{m/s}$$

where  $r/H \le 0.15$ .

$$\Delta T_d = T_d - T_a = (T_g - T_a) \left[ 1 - \exp\left(\frac{-tu^{1/2}}{\text{RTI}}\right) \right]^\circ \text{C}$$



#### Sprinkler/Heat Detector Activation Time





| evelopment of CFAST Input File                       |                                                                                                                                                                                                                                                                                                                 | HVAC Off<br>e Drive\YourFPE.com\Products\100RmM<br>Drive\YourFPE.com\Products\100RmMy |                                                                                                  |                              |                   |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|-------------------|--|--|
| Microsoft Excel                                      | 8 #No Wind                                                                                                                                                                                                                                                                                                      |                                                                                       | Generate 100%HRR CFAST Input fil                                                                 |                              |                   |  |  |
| Values from sheet '100% HRR' were created. Do CFAST? | o you want me to run                                                                                                                                                                                                                                                                                            |                                                                                       |                                                                                                  |                              |                   |  |  |
|                                                      | Yes No                                                                                                                                                                                                                                                                                                          | 1.0 1.0 1.0 1.0 1.0 1.0 0.02                                                          | < 1st room #, 2nd roo<br>< Prescribing duct ins<br>< Prescribing duct out<br>< Setting HVAC Flow | ide of room<br>tside of room |                   |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                 | 2.700E+007 393.150 665.150 0.30000                                                    |                                                                                                  |                              |                   |  |  |
|                                                      | 25     LFBT 2       26     TARG 1 FRONT 0.84 0.84 IMPLICIT F       27     DETECT 2 1 347 2.5 0 3 80 1 0       28     CIET ALL       29     CFCON 1 2       30     HHEAT       31     FTIME 50 100 150 200 250 300 3       32     FQDOT 0 308883.33325 564016.66       33     THRMF C:\NIST\cfast511\thermal.dit | 350 400 450 500 550 600 650 700 75<br>665 608816.666416667 571866.666333              |                                                                                                  | ikler                        | 3333 1024800 9355 |  |  |



## Excel Fire Modeling (Limitations)

#### HRR Database

- 25-Second intervals
- Maximum of 1000 seconds
- Linear interpolation in-between points

#### Cumulative HRR Development

- 25-Second intervals
- Maximum of 1000 seconds
- Linear interpolation in-between points
- Each combustible-type ignites at time=0
- Next combustible of same type ignites at next time interval (25s, 50s, 75s, etc.)



## Excel Fire Modeling (Limitations)

#### **Flashover Correlations**

- Babrauskas (ΔT=600°C )
  - Based on energy balance of McCaffrey, Quintiere, & Harckleroad
    - Mass outflow proportional to the size of the doorway opening
  - Based on a limited number of experimental test data
  - Assumed primary energy loss to be radiative to 40% wall area at ambient temperature
  - Based on a best fit of a stoichiometric heat release rate for doorway opening
- McCaffrey, Quintiere, & Harckleroad (∆T=500°C)
- Thomas (ΔT=600°C)
  - Cubic-shaped rooms

- 1. The correlation holds for compartment upper layer gas temperatures up to approximately 600°C.
- 2. It applies to steady-state as well as time-dependent fires, provided the primary transient response is the wall conduction phenomenon.
- 3. It is not applicable to rapidly developing fires in large enclosures in which significant fire growth has occurred before the combustion products have exited the compartment.
- 4. The energy release rate of the fire must be determined from data or other correlations.
- 5. The characteristic fire growth time and thermal penetration time of the room-lining materials must be determined in order to evaluate the effective heat transfer coefficient.
- 6. The correlation is based on data from a limited number of experiments and does not contain extensive data on ventilation-controlled fires nor data on combustible walls or ceilings. Most of the fuel in the test fires was near the center of the room.



## Excel Fire Modeling (Limitations)

#### Sprinkler/Heat Detector Activation Time

- Quasi-Steady-State
- Falls apart when HRR declines
  - Can produce an unrealistic reduction in temperature

#### **Simulation History**

- Maximum of 1000 seconds
- Difficulty in accounting for changes in HRR database

#### **Development of CFAST Input File**

- One doorway
- No corridor
- 21 datapoints (HRR timesteps)
- Predefined construction types



## Excel/CFAST Integration (Capabilities)

Cumulative HRR Model

- Rapid development of varying HRR models
- Rapid comparison of varied scenarios (total energy released)
- Rapid development of a HRR profile and verification of correct input
- Rapid screening of potential flashover rooms
  - Rapid comparison of different flashover correlations
- Easy identification of separation distance required to preclude radiative ignition
- Simple identification of anticipated heat detector of sprinkler activation time



## Excel/CFAST Integration (Capabilities)

Excel/CFAST Integration

- Rapid CFAST input file development
- Adds a user interface to CFAST V3/5
- Allows for rapid changes to CFAST input parameters
- Simple comparison to hand calculations



## Excel/CFAST Integration (Looking Forward)

How can this be improved?

- Get it out for feedback!
- HRR database with timesteps < 25-Seconds</p>
- Simulation runtime greater than 1000-Seconds
- Integration with CFAST V6
- Application of a Monte Carlo Simulation
  - Determine other Flashover correlations
  - Analyze model sensitivities
- Post-processing of CFAST output files



## Excel/CFAST Integration (Recap)

- •Why Excel?
- Capabilities
- How It Works
- Limitations
- Looking Forward



#### Questions?



**Topic:** Excel Fire Modeling and CFAST Integration **Presenter:** Rob Plonski **Contact:** RobPlonski@YourFPE.com







## Excel/CFAST Integration (Link)

Model Here

