

Random Topology Power Grid Modeling and the Simulation Platform

Zhifang Wang Seyyed Hamid Elyas Virginia Commonwealth University Richmond, VA, USA {zfwang, elyassh}@vcu.edu

Robert J. Thomas Cornell University Ithaca, NY, USA rjt1@cornell.edu

Modeling Electric Power Grid

Transmission grid: 3-phase balanced, high voltages, sparse meshed *small-world* topology, transmission lines, transformers and protective relays, etc.

"Electric" Topology of a Grid

- Graph Laplacian: $L = A^T A$
- Admittance matrix: $Y = A^T diag(y_1, \dots, y_M) A$ $y_l = 1/z_l, \ l = 1, \dots, M$
- Branch-node Incidence Matrix A (M x N): branch m: node i – node j:

$$A_{m,i} = 1, A_{m,j} = -1$$

else, $A_{m,k} = 0.$

• DC Power Flow Model:

$$P(t) = B'(t)\theta(t)$$
$$F(t) = \Lambda(y_l) A\theta(t)$$

Injected Power:

$$P(t) = [P_G(t), -P_L(t), P_C]^T$$

Locations of G/L/C buses – bus type assignment

$$\mathbb{T} = [\mathbb{T}_i]_{n \times 1}$$

 $\mathbb{T}_i = 1, 2, \text{ or } 3, \text{ if being a G/L/C bus}$

Other Critical Electric Parameters

- Generation Capacities:
- Transmission Constraints:
- Load Profiles
- etc

$$P_G^{\min} \le P_G \le P_G^{\max},$$

$$P_L^{\min} \le P_L \le P_L^{\max},$$

$$F^{\min} \le F \le F^{\max}.$$

Generating the electric topology

Small-World power grid topology with impedances

Bus Type Assignment $\mathbb T$

Three bus types in a grid:
 Generation bus (20-40%)
 Load bus (40-60%)
 Connection bus (~20%).

Real-world power grids have Correlated T.
 Randomized T causes the grid to behave differently and gives misleading results.

> How to characterize a Correlated T from the randomized ones ?

Defined Measure - Bus Type Entropy

$$W_1(\mathbb{T}) = -\Sigma_{k=1}^3 \log(r_k) \times \mathfrak{n}_k - \Sigma_{k=1}^6 \log(R_k) \times \mathfrak{m}_k$$

$$\begin{split} &\mathfrak{n}_k = \sum_{i=1}^n \delta(\mathbb{T}_i - k), \ k = 1, 2, 3 \\ &\kappa_k = \mathfrak{n}_k / n \end{split} \text{Total number of G/L/C buses} \end{split}$$

$$\mathfrak{m}_{k} = \Sigma_{j=1}^{m} \delta(\mathbb{L}_{j} - k), \quad k = 1, 2, \cdots, 6$$

$$R_{k} = \mathfrak{m}_{k}/m$$

$$\mathrm{Total number of each type links i.e. {GG, GL, GC, LL, LC, CC}}$$

Two Additional Variations

$$W_1(\mathbb{T}) = -\Sigma_{k=1}^3 \log(r_k) \times \mathfrak{n}_k - \Sigma_{k=1}^6 \log(R_k) \times \mathfrak{m}_k$$
$$W_2(\mathbb{T}) = -\Sigma_{k=1}^3 \log(r_k) - \Sigma_{k=1}^6 \log(R_k)$$
$$W_3(\mathbb{T}) = -\Sigma_{k=1}^3 \log(r_k) \times \frac{1}{\mathfrak{n}_k} - \Sigma_{k=1}^6 \log(R_k) \times \frac{1}{\mathfrak{m}_k}$$

Empirical PDF of Randomized $\widetilde{\mathbb{T}}$

- Random permutation of original bus type assignment T_0
- Evaluating of the bus type entropy
- Statistical analysis: normal fitting

$$f_W(x) = \frac{\sum_{k=1}^{k^{\max}} \delta_{\Delta}(W_k - x)}{k^{\max}}$$
$$\delta_{\Delta}(x) = \begin{cases} \frac{1}{\Delta}, & -\frac{\Delta}{2} < x \le -\frac{\Delta}{2}\\ 0, & \text{otherewise.} \end{cases}$$

Empirical and Fitting PDF of W(T)

Multi-objective Optimization Algorithm

Numerical Results

Challenge: How to directly determine a searching target W*? **Question**: Is it possible to derive a scaling function of W* in terms of network size *N*?

Normal Fitting Parameters

TABEL I The Parameters of Normal Distribution Fitting

	$W_1(\mathbb{T})$	$W_2(\mathbb{T})$	$W_3(\mathbb{T})$
	$\mu/\sigma/W(\mathbb{T}^*)$	$\mu/\sigma/W(\mathbb{T}^*)$	$\mu/\sigma/W(\mathbb{T}^*)$
IEEE-300	943.21/10.58/927.5	15.95/0.252/16.47	0.466/0.069/0.726
NYISO	14193/48.8/13910	14.901/0.06/15.16	0.020/0.0007/0.022
ERCOT	15372/56.47/14428	17.99/0.13/22.32	0.102/0.0143/2.64

Normalized Distance of $W(T^*)$

TABEL II

The Normalized Distance of Realistic Bus Type Entropy

	(N,M)	$\stackrel{W_1(\mathbb{T})}{d_{W_*}}$	$W_2(\mathbb{T})\ d_{W_*}$	$W_3(\mathbb{T}) \ d_{W_*}$
IEEE-300	(300,409)	1.48	1.96	3.76
NYISO	(2935,6567)	5.78	28.72	2.42
ERCOT	(5633,7053)	16.71	33.30	177.48

$$d_{W_*} = |W(\mathbb{T}^*) - \mu| / \sigma$$

All the Test Cases Considered

IEEE Test cases

- 30, 57, 118, 300 buses
- NYISO System
 - 2935 buses
- ERCOT System
 - 5633 buses
- WECC System
 - 16994 buses

Revised Definitions

• Relative Distance:
$$d_W(\mathbb{T}^*, \widetilde{\mathbb{T}}) = \frac{W(\mathbb{T}^*) - \mu}{\sigma}$$

Entropy Definition:

 $W(\mathbb{T}) = -\frac{\sum_{i=1}^{n} \log(r_{\mathbb{T}_i})}{n} - \frac{\sum_{j=1}^{m} \log(R_{\mathbb{L}_j})}{m}$ - Equally can be written as:

 $W(\mathbb{T}) = -\Sigma_{k=1}^3 r_k \log(r_k) - \Sigma_{k=1}^6 R_k \log(R_k)$

• Advantages:

- Better Statistical Properties
- Improved Numerical Stability

Empirical PDF

Fig. 4. The Empirical PDF and the Normal Distribution Fitting for the Bus Type Entropy $W_0(\tilde{\mathbb{T}})$ by Randomizing the Bus type Assignments in realistic power grids IEEE-30 (a), IEEE-57 (b), IEEE-118 (c), IEEE-300 (d), NYISO (e), ERCOT (f), and WECC (g) with $k^{max} = 40,000$. In each sub-figure the realistic bus type entropy \mathbb{T}^* and $W^* = W(\mathbb{T}^*)$ is marked by a red 'star'.

Normalized Distance vs. Network Size

TABLE I. The Normal Fitting Parameters of the Empirical PDF of $W(\widetilde{\mathbb{T}})$ and the Relative Distance of d_W

	(μ, σ)	$W(\mathbb{T}^*)$	$d_W(\mathbb{T}^*,\widetilde{\mathbb{T}})$
IEEE-30	(2.38, 9.0e-2)	2.49	1.22
IEEE- 5 7	(2.31, 5.8e-2)	2.44	2.24
IEEE-118	(2.34, 4.5e-2)	2.35	0.22
IEEE-300	(2.57, 2.6e-2)	2.53	-1.53
NYISO-2935	(2.74, 7.3e-3)	2.70	-5.71
ERCOT-5633	(2.36, 8.1e-3)	2.23	-16.25
WECC-16994	(2.72, 3.4e-3)	2.33	-114.70

Scaling Function $d_W(n)$ vs. $\log(n)$

• Scaling function of $d_W(n)$

$$d_W(n) = \begin{cases} -1.39 \log n + 6.79, & \log n \le 8\\ -1.25 \times 10^{-13} (\log n)^{15.1} + 0.43, & \log n < 8 \end{cases}$$

• The Searching Target:

$$W^*(n) = \mu + \sigma \cdot d_W(n)$$

Revised Algorithm

CERTS R&M Meeting, June 9-10, 2016

Simulation Platform with GUI

Simulation Platform with GUI

Scaling Function $d_W(n)$ vs. $\log(n)$

Conclusions & Future Works

- The RT-*nestedSmallWorld* model, to our best knowlege, is the most comprehensive and appropriate synthetic grid model in the literature to formulate a small-world connecting topology with line impedances of heavy-detailed distribution.
- The definition of a numerical measure called the *Bus Type Entropy*, is re-examined and re-defined to characterize the correlated bus type assignment in a grid, with the IEEE test cases, the NYISO, ERCOT, and WECC systems.
- The newly defined entropy has better statistical property and improved numerical stability.
- This measure enables our study of the scaling property of correlated bus type assignment with regard to network size, with the help of distribution parameters estimated from the non-segmented empirical PDF of a normal distribution of randomized bus type entropy.

Conclusions & Future Works

- With the derived scaling function of correlated bus type assignment versus network size, a more efficient search algorithm based on clonal selection procedure is developed to present more accurate bus type assignments of generation, load, and connection buses in our random-topology power grid model.
- The simulation platform is now implemented with graphic user interface (GUI).
- Next steps:
 - to verify the accuracy and effectiveness of the proposed bus type entropy;
 - to study other electrical parameters in the synthetic grid modeling such as generation capacities, load profiles, and transmission constraints, etc.

Thank You!