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Key Partners/Collaborators 

Time Sensitive Networking (TSN) Testbed  
•NI Lead User 

Beyond Limits has emerged as the 
universal leader in “Applied Artificial 
Intelligence” (AAI) and Cognitive Cloud 
Computing based on more than 20 years 
of proven success supporting NASA and 
the Space program…. actively designing 
and developing products and services for 
the burgeoning Internet of Things (IOT) 
market that we call the Universe of 
Things (UOT).  

Top 50 Internet of Things 
Technology Company. Most 
Influential Industrial IoT 
Company. 

ThingWorx is the most widely 
adopted IoT technology 
platform. 

HPE Moonshot is an 
energy-efficient, integrated 
server system that gives you 
the right compute for your 
workloads. 

Presenter
Presentation Notes
http://www.beyond.ai/
https://www.rti.com/
https://www.hpe.com/us/en/servers/moonshot.html
SmartSenseCom: setup for the optical distance relay on the 24V SI-Grid and 480V DECC lab grid.




http://www.bing.com/images/search?q=nist+logo&view=detailv2&&id=402B5287B592EE750808F50D34FACD8243175548&selectedIndex=3&ccid=bS01DYFT&simid=608014340339794246&thid=OIP.M6d2d350d81533918805df8b9d688a1d2o0
http://www.iiconsortium.org/time-sensitive-networks.htm
http://www.ni.com/newsroom/release/ni-bosch-rexroth-cisco-intel-kuka-schneider-electric-and-tttech-announce-collaboration-on-time-sensitive-networking-testbed-with-the-industrial-internet-consortium/en/
http://www.beyond.ai/http:/www.beyond.ai/
http://www.rti.com/
https://www.hpe.com/us/en/servers/moonshot.html
http://www.bing.com/images/search?q=SGIP+open+FMB&view=detailv2&&id=D4583806AC60E9337FF0B2451016B5292E349D9A&selectedIndex=0&ccid=RtxM+OzI&simid=608011226489818900&thid=OIP.M46dc4cf8ecc8bd78470b016ac27ab10co0
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Project Background 
• High penetration of renewables 

– Inverter based 
– Controls challenges 

• High Fidelity data driven models 
– “Devices” 
– Lines 
– Systems 
– Loads 

“There is an imminent need 
for modeling distributed 

generation (e.g. solar, 
micro-turbines, fuel-cells 

etc.).”[2] … and loads. 

Need for high fidelity dynamic models of DERs, 
microgrids, loads, and inter-connected system. 

[1] A. Ishchenko, J. Myrzik, and W. Kling, “Dynamic equivalencing of distribution networks with dispersed generation using 
hankel norm  
approximation,” Generation, Transmission & Distribution, IET, vol. 1, no. 5, pp. 818–825, 2007. 
[2] Allen, Eric, D. N. Kosterev, and Pouyan Pourbeik. "Validation of power system models." Power and Energy Society 
General Meeting, 2010 IEEE. IEEE, 2010. 

“integrating large number 
of DERs with different 

dynamics into distribution 
level makes it practically 

impossible to find 
dynamic equivalents for 

distribution 
interconnections using 

traditional methods” [1] 

Presenter
Presentation Notes
[1] A. Ishchenko, J. Myrzik, and W. Kling, “Dynamic equivalencing of distribution networks with dispersed generation using hankel norm approximation,” Generation, Transmission & Distribution, IET, vol. 1, no. 5, pp. 818–825, 2007.
[2] Allen, Eric, D. N. Kosterev, and Pouyan Pourbeik. "Validation of power system models." Power and Energy Society General Meeting, 2010 IEEE. IEEE, 2010.
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Overall project objective 

• The objective of this activity is to develop a learning system 
that adequately characterizes the dynamic performance of 
generators, loads, and storage devices connected to the 
electric grid. This includes electronically coupled devices and 
other low-inertia or no-inertia devices with nontraditional 
dynamic behaviors. The ultimate value for electric system 
operators is to reduce the uncertainty associated with DER, 
renewable generation sources, and loads. 

A Data Driven Machine Learning Framework 
that learns device/load models. 
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Grid Live Grid Simulated Grid Share 

Grid Matrix 

Live Control 
and Monitoring 

of Grid 
Subsystems 

Research, 
Simulate and 

Validate 
PowerGrid 
(All levels) 

Cloud 
Access to 
All Things 

Grid 

Grid 
Analytics 

An open framework for advanced grid research… 

Presenter
Presentation Notes
DIGITAL TWIN APPLICATIONS BY STAKEHOLDER
SYSTEM DESIGN TEAM
Model Validation: Continuous online validation of the model during field deployments closes the loop with the design team and confirms or rejects the assumptions on which their design decisions are based.
Design Optimization: Digital twin models combined with advanced machine learning algorithms facilitates design optimization that spans the boundaries between the physical system design and the control algorithms to satisfy multiple design objectives. Example: Optimize the design for energy efficiency, cost reduction, and uptime
CONTROL DESIGN TEAM
Observer-based Control: Many internal states in cyber-physical systems cannot be physically measured but are modeled in the digital twin and can be used as feedback signals for control. Example: IGBT junction temperature active regulation
Delay Removal: Time delays are very problematic for control systems and can be removed in the digital twin model. “Zero delay” digital twin signals can be used as feedback signals for control. Example: Zero delay temperature control
Automatic Online Re-Tuning: The digital twin model combined with advanced machine learning algorithms can be used to find the optimal tuning gains that satisfy multiple linear and non-linear control objectives. Example: Simultaneous tuning of cascaded control loops for setpoint tracking, stability, and IEEE 1547 compliance objectives.
Predictive Control: Faster than real-time digital twin models can be used to explore multiple control strategies before committing to one. 
OPERATIONS & MAINTENANCE TEAM
Prognostics: A mismatch between the physical system response and the digital twin may indicate a problem. The digital twin endows the control system with an expectation for the system response, enabling problems to be detected long before a failure occurs.
Lifetime Extension: Digital twins can include models for component lifetime, which can be incorporated in the control strategy to extend lifetime and increase reliability.
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Shadow  
Network 

Configuration Controller: 
Reference Implementations,  

Use Cases & Data Sets 

An open framework for advanced grid research… 

“Plug-n-Play” 
Simulation 

CSEISMIC “Holy Grail of Simulation Technology” 

DECC 
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Presenter
Presentation Notes
We utilize a number of platforms to move the development of microgrids and systems to the next level. From computational simulations that can allow us to test a concept then interlink hardware to a simulation environment we commonly refer to hardware in the loop -  to lower power scaled systems that allow us to test the full systems in a physical environment. These stages allow us to rapidly take a concept or controls development to full implementation much more rapidly then in the past.

LDRD: An Open Framework for Joint Optimization/Control of Networked Microgrids
CSEISMIC: Complete System-Level Efficient and Interoperable Solution for Microgrid Integrated Controls
SI-GRID: Software-defined Intelligent Grid Research Integration & Development; Grid-SEER: Grid Self-aware Elastic Extensible Resiliency 
TSN: Time-Sensitive Networking
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SI-GRID Overview 
• Multiple local low-voltage (<100V) microgrids 
• One remote microgrid 
• Minimum definition of microgrid considered  

– One grid connection 
– One controllable source 
– One load 

• Maximum reconfigurability 
• Rack-mountable 
• Diverse resources 

– Currently all inverter-based + DFIG 

• Time Sensitive Networking enabled 
• Re-configurable/definable comms 

“Software-Defined Grid”  
meets  

“Software-Defined Network” 
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Looking Back 
• Development of SI-GRID machine/device models:  

– Doubly-Fed Induction Generator (DFIG), Inverter-based motor, PV inverter, and 
Energy storage BuckBoost inverter. 

• Real-time FPGA-based SI-GRID device models:  
– DFIG, PV inverter, and energy storage BuckBoost inverter.   

• Characterization of steady state and dynamic parameters (through 
measurements):  

– Energy storage BuckBoost inverter, IGBT thermal junction 

•  Perform real-time machine simulations:  
– Non-linear IGBT-diode thermal FPGA models, DFIG 

• Learning framework:  
– Adaptive Differential Evolution (JADE) 
– Real time/FPGA “digital twin” co-simulations in the cRIO controller 
– Real time implementation of OpalRT’s eHS64 in the cRIO 
– JADE + surrogate optimizer is currently “learning” 8+ "multiphysics" parameters  

• PWM waveform parameters, semiconductor device parameters, thermal resistance from case to 
ambient, and external circuit parameters including the battery. 

•  Industry engagement:  
– National Instruments, HPE, AgileSwitch, Duke Energy, Dominion, SEL, SEMIKRON,  

Beyond Limits, ColdLight 

Presenter
Presentation Notes
FY15-Q3
Development of machine/device models: models were developed for the following devices in ORNL’s SI-GRID—induction machine, inverter-based motor, PV inverter, and energy storage BuckBoost inverter.
 
Real-time FPGA-based device models: Initial FPGA-based models were developed for the following devices in the ORNL SI-GRID—induction machine, PV inverter, and energy storage BuckBoost inverter.
 
Characterization of steady state and dynamic parameters (through measurements): initial measurements were taken and comparisons made for the energy storage BuckBoost inverter.
 
Perform real-time machine simulations: Initial FPGA-based real-time simulations were developed for the PV inverter, and energy storage BuckBoost inverter.
 
Learning framework: Worked with National Instruments (NI) engineers on a Differential Evolution (DE) based optimization/learning framework in LabVIEW to learn and tune model parameters for devices using empirical data from running devices (recorded and live measurements).

FY15-Q4
Development of machine/device models: continued development and refinement of the following devices in ORNL’s SI-GRID—induction machine, inverter-based motor, PV inverter, and energy storage BuckBoost inverter.
 
Real-time FPGA-based device models: continued refinement of the FPGA-based models for the following devices in the ORNL SI-GRID—induction machine, PV inverter, and energy storage BuckBoost inverter.  
 
Characterization of steady state and dynamic parameters (through measurements): measurements were taken and comparisons made for the energy storage BuckBoost inverter.  We also used IGBT thermal junction measurements and a real time non-linear IGBT-diode thermal FPGA model to implement active junction temperature thermal regulation (described under the next heading). This has the potential of significantly extending power electronics devices lifetimes. 
 
Perform real-time machine simulations: Real time simulation of non-linear IGBT-diode thermal FPGA models were used to implement active junction temperature thermal regulation using a zero delay observer model, where the feedback into the PID controller is the temperature the junction temperature would reach at steady state (updated instantaneously based on the instantaneous voltage, current, switching frequency using the non-linear IGBT-diode thermal FPGA model).  This model is based on the thermal resistance without the thermal capacitance (transient response). By using the integral action on the PID controller, the PID controller estimates the steady-state value and makes fast adjustments to the switching frequency before it ever reaches the steady state value, and thereby achieves junction temperature control with low temperature ripple. In addition to the switching frequency, for back-to-back converters we could also adjust the DC link voltage within a certain range (since it increases/decreases switching losses), and for systems with active cooling we could also adjust the fan speed, etc.
Learning framework: Continued working with National Instruments (NI) engineers on implementation of  several key elements in the on-line optimization/learning framework in LabVIEW: 1) an adaptive implementation Differential Evolution (DE) called JADE to learn/tune the models as well as local controllers; 2) a real time “digital twin” co-simulation of the device/component models that run in the cRIO controller FPGA; 3)  a real time implementation of OpalRT’s eHS64 real-time FPGA-based power electronics simulator/solver that runs in the cRIO FPGA; and 4) a learning engine that tunes model parameters for devices/components using empirical data from running devices and co-simulation/solver.  The JADE + surrogate optimizer is currently fitting 8 "multiphysics" parameters including the semiconductor device parameters, thermal resistance from case to ambient, and external circuit parameters including the battery.
 
Industry engagement: while we converted the dynamic modeling questionnaire into an online survey, we encountered a problem.  There is a restriction/regulation on soliciting feedback for official DOE programs, so we are working on how we obtain the requisite permissions to announce the survey and request the industry input. 

FY16-Q1
Very little was accomplished during the reporting period due to staff availability conflicts. Additional staff members and graduate students have been hired which should allow us to resume activity next quarter. 

On Nov. 10-12 we hosted a meeting with National Instruments, Hewlett Packard Enterprise, and PTC/ColdLight to discuss the application of machine learning and automated model development for next generation grid simulation and controls. During the meeting we shared our vision and early results. Based on the meeting we’ve entered into an NDA to explore ongoing opportunities for collaboration and potential transition of our research.

FY16-Q2
Development of machine/device models: continued development and refinement of the following devices in ORNL’s SI-GRID—induction machine, inverter-based motor, PV inverter, and energy storage BuckBoost inverter.
 
Real-time FPGA-based device models: continued refinement of the FPGA-based models for the following devices in the ORNL SI-GRID—induction machine, PV inverter, and energy storage BuckBoost inverter.  
 
Characterization of steady state and dynamic parameters (through measurements): measurements were taken and comparisons made for the energy storage BuckBoost inverter.  We also used IGBT thermal junction measurements and a real time non-linear IGBT-diode thermal FPGA model to implement active junction temperature thermal regulation (described under the next heading). This has the potential of significantly extending power electronics devices lifetimes. 
 
Perform real-time machine simulations: Real time simulation of non-linear IGBT-diode thermal FPGA models were used to implement active junction temperature thermal regulation using a zero delay observer model, where the feedback into the PID controller is the temperature the junction temperature would reach at steady state (updated instantaneously based on the instantaneous voltage, current, switching frequency using the non-linear IGBT-diode thermal FPGA model).  This model is based on the thermal resistance without the thermal capacitance (transient response). By using the integral action on the PID controller, the PID controller estimates the steady-state value and makes fast adjustments to the switching frequency before it ever reaches the steady state value, and thereby achieves junction temperature control with low temperature ripple. In addition to the switching frequency, for back-to-back converters we could also adjust the DC link voltage within a certain range (since it increases/decreases switching losses), and for systems with active cooling we could also adjust the fan speed, etc.
Learning framework: Continued working with National Instruments (NI) engineers on implementation of  several key elements in the on-line optimization/learning framework in LabVIEW: 1) an adaptive implementation Differential Evolution (DE) called JADE to learn/tune the models as well as local controllers; 2) a real time “digital twin” co-simulation of the device/component models that run in the cRIO controller FPGA; 3)  a real time implementation of OpalRT’s eHS64 real-time FPGA-based power electronics simulator/solver that runs in the cRIO FPGA; and 4) a learning engine that tunes model parameters for devices/components using empirical data from running devices and co-simulation/solver.  The JADE + surrogate optimizer is currently fitting 8 "multiphysics" parameters including the semiconductor device parameters, thermal resistance from case to ambient, and external circuit parameters including the battery.
 
Industry engagement: while we converted the dynamic modeling questionnaire into an online survey, we encountered a problem.  There is a restriction/regulation on soliciting feedback for official DOE programs, so we are working on how we obtain the requisite permissions to announce the survey and request the industry input. 
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DFIG (Wind Turbine) Setup 

FPGA Front Panel During Run-Time - Physical IO and HIL 
Model Running in GPIC FPGA 
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FPGA Digital Control System 

 
 
 
 
 
 
 
Digital Twin Simulated World 

 
Analog Physical World 

FPGA BASED CONTROL SYSTEM WITH LOCAL 
DIGITAL TWIN 

DC 

DC 

AC 

AC 

GPIC Control  
System 

Transformer Active Front End Variable Freq. Drive 

Battery Stack, 
Solar Array 

DC 
DC Buck/Boost 

Converter 

Motor/Generator 

DC 

DC 

AC 

AC 
Transformer Motor/Generator 

DC 
DC Buck/Boost 

Converter 

Battery Stack, 
Solar Array 
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Presenter
Presentation Notes
The digital twin is embedded locally in the control system or located remotely in a real-time simulation supercomputer. Digital twins are used in the control system to regulate things that cannot be physically measured such as the junction temperature of the IGBT power converters, which enables their operating lifetime to be extended over 100 fold. 

Digital twin real-time simulation models embedded in the LabVIEW FPGA based digital control systems enables each control system to continuously self-analyze, tune and globally optimize performance relative to multiple objectives and goals (i.e. energy efficiency, set-point tracking, operating cost, equipment lifetime). We demonstrated how local digital twins, combined with advanced machine learning tools, can perform online model identification, automatically re-tune control loops, and continuously optimize the performance of the digital control system in a way that is resilient against changes that occur in the physical world. 

Likewise, digital twins can provide forward looking predictive modeling, answer "what if" questions, and explore system wide and local control optimizations before they are committed. 

Digital twins can also be used for advanced prognostics, since a deviation between the expected response (calculated by the digital twin) and the physical response indicates a problem or change that has occurred in the physical world. In other words, the control system knows what to expect, and a deviation from the expected performance indicates a problem. Thus, an exceptional level of self-prognostic capability is enabled, since digital twin provides a continuous online performance benchmark for comparison. 
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Buck-Boost Energy Storage Converter with Digital 
Twin for Active Junction Temperature Regulation 

1. IGBT half-bridge output voltage (red) 
2. Battery Charge/Discharge Current (blue) 
3. Battery Terminal Voltage (green) 
4. Case Temperature (red) 

Single IGBT Half-Bridge Data 
(Physical Measurement vs. “Digital Twin”) 

Presenter
Presentation Notes
Note: For current limiting, the relationships between switching frequency, DC link voltage and max current are complex (need to use ML … looking at Multivariate Localized Kernel Regression)

The chart shows comparison between physical voltage, current and temperature signals in one Microgrid energy storage converter and the real-time simulated voltages and currents, plotted on the same chart. Machine learning is used to automatically identify the model parameters online. Note the excellent match. 

Digital Twin Circuit Model Simulated in LV FPGA:

dIu = (Vu-Vbat-(Rload+R_LESR)*Iu)/L
Iu = Iu[k-1] + dIu[k] · dt
dV_bat = Iu/Cbat+V_bat_INIT_s
V_bat = V_bat[k-1] + dV_bat[k] · dt
Vload = Vbat+Iu*Rload
Pload = C*Vbat*dV_bat+Iu^2*Rload
P_L = Iu^2*R_LESR
Ploss = P_L+Pcond+Psw
Efficiency=Pload/(Pload+Ploss)
DTcase-ambient=Rthca_s*(Pcond+Psw)
DTjunc-case=Rthjc_s*(Pcond+Psw)
Tcase = Ta+DTcase-ambient
Tjunc= Tcase+DTjunc-case
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Looking Forward (FY16 – Carryover) 

Presenter
Presentation Notes
FY15-Q3
Development of machine/device models: models were developed for the following devices in ORNL’s SI-GRID—induction machine, inverter-based motor, PV inverter, and energy storage BuckBoost inverter.
 
Real-time FPGA-based device models: Initial FPGA-based models were developed for the following devices in the ORNL SI-GRID—induction machine, PV inverter, and energy storage BuckBoost inverter.
 
Characterization of steady state and dynamic parameters (through measurements): initial measurements were taken and comparisons made for the energy storage BuckBoost inverter.
 
Perform real-time machine simulations: Initial FPGA-based real-time simulations were developed for the PV inverter, and energy storage BuckBoost inverter.
 
Learning framework: Worked with National Instruments (NI) engineers on a Differential Evolution (DE) based optimization/learning framework in LabVIEW to learn and tune model parameters for devices using empirical data from running devices (recorded and live measurements).

FY15-Q4
Development of machine/device models: continued development and refinement of the following devices in ORNL’s SI-GRID—induction machine, inverter-based motor, PV inverter, and energy storage BuckBoost inverter.
 
Real-time FPGA-based device models: continued refinement of the FPGA-based models for the following devices in the ORNL SI-GRID—induction machine, PV inverter, and energy storage BuckBoost inverter.  
 
Characterization of steady state and dynamic parameters (through measurements): measurements were taken and comparisons made for the energy storage BuckBoost inverter.  We also used IGBT thermal junction measurements and a real time non-linear IGBT-diode thermal FPGA model to implement active junction temperature thermal regulation (described under the next heading). This has the potential of significantly extending power electronics devices lifetimes. 
 
Perform real-time machine simulations: Real time simulation of non-linear IGBT-diode thermal FPGA models were used to implement active junction temperature thermal regulation using a zero delay observer model, where the feedback into the PID controller is the temperature the junction temperature would reach at steady state (updated instantaneously based on the instantaneous voltage, current, switching frequency using the non-linear IGBT-diode thermal FPGA model).  This model is based on the thermal resistance without the thermal capacitance (transient response). By using the integral action on the PID controller, the PID controller estimates the steady-state value and makes fast adjustments to the switching frequency before it ever reaches the steady state value, and thereby achieves junction temperature control with low temperature ripple. In addition to the switching frequency, for back-to-back converters we could also adjust the DC link voltage within a certain range (since it increases/decreases switching losses), and for systems with active cooling we could also adjust the fan speed, etc.
Learning framework: Continued working with National Instruments (NI) engineers on implementation of  several key elements in the on-line optimization/learning framework in LabVIEW: 1) an adaptive implementation Differential Evolution (DE) called JADE to learn/tune the models as well as local controllers; 2) a real time “digital twin” co-simulation of the device/component models that run in the cRIO controller FPGA; 3)  a real time implementation of OpalRT’s eHS64 real-time FPGA-based power electronics simulator/solver that runs in the cRIO FPGA; and 4) a learning engine that tunes model parameters for devices/components using empirical data from running devices and co-simulation/solver.  The JADE + surrogate optimizer is currently fitting 8 "multiphysics" parameters including the semiconductor device parameters, thermal resistance from case to ambient, and external circuit parameters including the battery.
 
Industry engagement: while we converted the dynamic modeling questionnaire into an online survey, we encountered a problem.  There is a restriction/regulation on soliciting feedback for official DOE programs, so we are working on how we obtain the requisite permissions to announce the survey and request the industry input. 

FY16-Q1
Very little was accomplished during the reporting period due to staff availability conflicts. Additional staff members and graduate students have been hired which should allow us to resume activity next quarter. 

On Nov. 10-12 we hosted a meeting with National Instruments, Hewlett Packard Enterprise, and PTC/ColdLight to discuss the application of machine learning and automated model development for next generation grid simulation and controls. During the meeting we shared our vision and early results. Based on the meeting we’ve entered into an NDA to explore ongoing opportunities for collaboration and potential transition of our research.

FY16-Q2
Development of machine/device models: continued development and refinement of the following devices in ORNL’s SI-GRID—induction machine, inverter-based motor, PV inverter, and energy storage BuckBoost inverter.
 
Real-time FPGA-based device models: continued refinement of the FPGA-based models for the following devices in the ORNL SI-GRID—induction machine, PV inverter, and energy storage BuckBoost inverter.  
 
Characterization of steady state and dynamic parameters (through measurements): measurements were taken and comparisons made for the energy storage BuckBoost inverter.  We also used IGBT thermal junction measurements and a real time non-linear IGBT-diode thermal FPGA model to implement active junction temperature thermal regulation (described under the next heading). This has the potential of significantly extending power electronics devices lifetimes. 
 
Perform real-time machine simulations: Real time simulation of non-linear IGBT-diode thermal FPGA models were used to implement active junction temperature thermal regulation using a zero delay observer model, where the feedback into the PID controller is the temperature the junction temperature would reach at steady state (updated instantaneously based on the instantaneous voltage, current, switching frequency using the non-linear IGBT-diode thermal FPGA model).  This model is based on the thermal resistance without the thermal capacitance (transient response). By using the integral action on the PID controller, the PID controller estimates the steady-state value and makes fast adjustments to the switching frequency before it ever reaches the steady state value, and thereby achieves junction temperature control with low temperature ripple. In addition to the switching frequency, for back-to-back converters we could also adjust the DC link voltage within a certain range (since it increases/decreases switching losses), and for systems with active cooling we could also adjust the fan speed, etc.
Learning framework: Continued working with National Instruments (NI) engineers on implementation of  several key elements in the on-line optimization/learning framework in LabVIEW: 1) an adaptive implementation Differential Evolution (DE) called JADE to learn/tune the models as well as local controllers; 2) a real time “digital twin” co-simulation of the device/component models that run in the cRIO controller FPGA; 3)  a real time implementation of OpalRT’s eHS64 real-time FPGA-based power electronics simulator/solver that runs in the cRIO FPGA; and 4) a learning engine that tunes model parameters for devices/components using empirical data from running devices and co-simulation/solver.  The JADE + surrogate optimizer is currently fitting 8 "multiphysics" parameters including the semiconductor device parameters, thermal resistance from case to ambient, and external circuit parameters including the battery.
 
Industry engagement: while we converted the dynamic modeling questionnaire into an online survey, we encountered a problem.  There is a restriction/regulation on soliciting feedback for official DOE programs, so we are working on how we obtain the requisite permissions to announce the survey and request the industry input. 
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CDDMD + SI-GRID + Grid-SEER 

BATTERIES

RESIDENTIAL LOAD EMULATION

208V 3Phase

24V 3Phase

SOLAR GENERATION SOURCE

Disconnect Switch

Lead Acid MK 12VDC / 18Ah

42VDC 

3ϕ 750W 24VAC 

40VDC 

24V 1ϕ 42VDC 0-42VDC 

DC Servo

24V 3Phase

3ϕ 100W 24VAC 

3ϕ 200W 24VAC 

Li-Ion Fiat Battery 24VDC / 66Ah

60VDC 
3ϕ 100W 24VAC 

ASIG

MACHINE BASED (WIND) GENERATION SOURCE

MATLAB

Transformer (208V/24V)

DC Supply

Physical Microgrid(s): 
• cRIO FPGA Based Control Systems w/ local  

“Digital Twins”, JADE and TSN 
• Learn/validate model parameters 

• DFIG, ES, PV, … 
• Pass params to Grid-SEER for system validation 

  
 

Real-time System Simulation 
• SI-GRID devices 
• SI-GRID system(s) 
• Compare predications to measurements 

Model 
Parameters & 

measurements 

Predicted V, 
I, phase, freq, 

… 

Presentation/Paper with results. 

Presenter
Presentation Notes
Both the real system and the simulation system are run in parallel and we achieve a real-time digital twin of the grid. 

This system enables the creation of validated simulation models at every level. The atomic core is the digital twin models running in each control system. Scientific method is applied at each level to develop and validate models. We use machine learning to identify the models. 


PHYSICAL MICROGRID CONTROL SYSTEMS

Areas that this platform will support include: addressing networked microgrid control and optimization, standardization and integration of various distributed energy resources, including renewables and energy storage, different types of loads, such as buildings, equipment, appliances, and vehicles, protection, communications, and cyber-physical security. 

Some of the features of the platform include 1) complies with relevant standards existing and under development; 2) is extensible by interfacing to grid simulators existing and under development; 3) employs an open data architecture; 4) has a highly instrumented shadow network with high speed data collection, storage and retrieval, to fully monitor operations; 5) generates reference data sets for advanced grid research and 6) can be used to establish/host grid resiliency/cyber-security war games exercises.

The SI-GRID will include the implementation of a shadow network. This network will be capable of monitoring all the physical measurements on the system (externally independent to the actual devices so as not to impact any control systems) and also all network data. This type of data collection and analytics enables the benchmarking of test scenarios along with the added capability of creating a test bench which could do impact assessments on both the impact of cyber-attacks on the power system and also on defense mechanisms effectiveness. Through the shadow network, analytics will be able to be performed to see what type of intrusion occurred, what could have been detected, and what the physical damage to the system was. 

We plan to conduct a series of red team experiments on the network to produce a dataset of attacks which can then be used to evaluate their impact and compare the effectiveness of various countermeasures such as: Commercial off-the-shelf Intrusion Detection Systems (COTS IDS), firewalls and embedded security systems on the devices themselves. In addition to the tests proposed in [9], we plan to evaluate machine learning (ML) to determine usefulness in microgrid security. We also plan to evaluate what measures can automatically be taken to mitigate the impact of cyber-attacks and determine what measures can be added for when they go undetected. This could prevent the spread of the attack and thereby increase the overall system resilience. In comparison with the ML evaluation in [10]-[11], this work will extend to evaluate automated responses upon detection

REAL-TIME GRID SIMULATION LOW-LATENCY RECONFIGURABLE SUPERCOMPUTER

The simulation of large electric systems consisting of many transmission lines and inverters is a numerical and data communication challenge. The FPGA targets must calculate the state of the Microgrid power system at a simulation timestep of 1 microsecond (1 MHz). The communication tasks between adjacent FPGAs reflect the transfer of voltages and currents for all three phases. This translates into 6 (single) values per FPGA at 1 MHz. We demonstrated that the communication demands can be met assuming the transmission line delay is larger than 5 usec. In our tests we reached transfer rates of more than 2 GB/sec. 
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TSN Standards Efforts 

• Standards effort through IEEE 802 to improve latency and 
performance while maintaining interoperability and openness 

• Time Sensitive Networking (TSN) will provide: 
– Time synchronization 
– Bandwidth reservation and path redundancy for reliability 
– Guaranteed bounded latency 
– Low latency (cut-though and preemption)  
– Bandwidth (Gb+)  
– Routable to support complex networks and wireless 
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IEEE Time-Sensitive Networks 
Overview 

Standard Area Title 

IEEE 802.1ASrev, 
IEEE 1588 Timing & Synchronization Enhancements and Performance Improvements 

IEEE 802.1Qbu & 
IEEE 802.3br Forwarding and Queuing Frame Preemption 

IEEE 802.1Qbv Forwarding and Queuing Enhancements for Scheduled Traffic 

IEEE 802.1Qca Path Control and Reservation Path Control and Reservation 

IEEE 802.1Qcc Central Configuration Method Enhancements and Performance Improvements 

IEEE 802.1Qci Time Based Ingress Policing Per-Stream Filtering and Policing 

IEEE 802.1CB Seamless Redundancy Frame Replication & Elimination for Reliability 

 

Presenter
Presentation Notes
Standards effort through IEEE 802 to improve latency and performance while maintaining interoperability and openness

Time Sensitive Networking (TSN) will provide:
Time synchronization
Path redundancy for reliability
Assured bounded latency
Bandwidth (Gb+) 
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TSN Based “Hard Real-Time” Ethernet 
Devices 

Key technology vendors are driving: 
• Intel 
• Broadcom 
• Marvell 
• Cisco 
Key industrial, embedded, and 
automotive vendors are participating to 
drive requirements 

Network Infrastructure 
(Switches, cabling, etc 

Standard HW or SW 

Custom HW or SW 

IP (Layer 3) 

TCP/UDP (Layer 4) S
of

tw
ar

e 

MAC (Layer 2) 

Physical (Layer 1) 

Queue controller  

Control 
Data 

Session, Presentation, and 
Application 
(Layers 5-7) 

H
ar

dw
ar

e 

Where is the power  
industry representation? 
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FY17 and Beyond 
• Inverter Based DER Integration 

– CDDMD  
– TSN enabled advanced controls 
– Wind Farm in the “ERCOT Panhandle Area” 

compare to Synchronous Condensers 

• Anticipatory Intelligent thermal management  
of Inverter IGBTs est. 100x life 

• Adaptive Load Orchestration/Coordination 
– Adapt CDDMD to learn loads “Agents” 

• Communities 
• Light Commercial/Industrial 

– Anonymize (load data)  
– Orchestrate Adaptive coordination of opt-in “smart loads” + legacy 

“learned loads” with multiple goals/objectives 
• Cost  
• Stability 

– Greatly reduces peak load and total load uncertainties  

Presenter
Presentation Notes
High penetration issues
Power quality – harmonics
Control stability - sub-synchronous oscillations
Low voltage ride through
Anti-islanding
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• Scalable Architecture 
• Data anonymization 
• Machine Learning 
• Orchestrated load utilization 
• Reduced load uncertainty  
• Advanced Inverter-Based DER 

Integration 

CDDMD 
Grid-SEER 

Model/Simulation 

Enable a new generation of real-time, secure, data-
driven services reducing load uncertainty and 

improving Grid Resiliency. 

PAC/Control 
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